Suppose F is a field different from F2, the field with two elements. Let Mn(F) and Sn(F) be the space of n × n full matrices and the space of n ×n symmetric matrices over F, respectively. For any G1, G2 ...Suppose F is a field different from F2, the field with two elements. Let Mn(F) and Sn(F) be the space of n × n full matrices and the space of n ×n symmetric matrices over F, respectively. For any G1, G2 ∈ {Sn(F), Mn(F)}, we say that a linear map f from G1 to G2 is inverse-preserving if f(X)^-1 = f(X^-1) for every invertible X ∈ G1. Let L (G1, G2) denote the set of all inverse-preserving linear maps from G1 to G2. In this paper the sets .L(Sn(F),Mn(F)), L(Sn(F),Sn(F)), L (Mn(F),Mn(F)) and L(Mn (F), Sn (F)) are characterized.展开更多
基金supported in part by the Chinese Natural Science Foundation under Grant No.10271021the Natural Science Foundation of Heilongjiang Province under Grant No.A01-07the Fund of Heilongjiang Education Committee for Overseas Scholars under Grant No.1054
文摘Suppose F is a field different from F2, the field with two elements. Let Mn(F) and Sn(F) be the space of n × n full matrices and the space of n ×n symmetric matrices over F, respectively. For any G1, G2 ∈ {Sn(F), Mn(F)}, we say that a linear map f from G1 to G2 is inverse-preserving if f(X)^-1 = f(X^-1) for every invertible X ∈ G1. Let L (G1, G2) denote the set of all inverse-preserving linear maps from G1 to G2. In this paper the sets .L(Sn(F),Mn(F)), L(Sn(F),Sn(F)), L (Mn(F),Mn(F)) and L(Mn (F), Sn (F)) are characterized.