This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from ...This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.展开更多
While approaching the target body, the deep-space probe is orbiting hyperbolically before the maneuver. We discuss the variation of perturbed hyperbolic orbit using the method similar to that used in elliptic orbit. E...While approaching the target body, the deep-space probe is orbiting hyperbolically before the maneuver. We discuss the variation of perturbed hyperbolic orbit using the method similar to that used in elliptic orbit. Ephemeris calculating and orbit control will benefit from the given analytical solution.展开更多
We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential.The apparatus c...We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential.The apparatus consists of a computer controlled data acquisition card,a working circuit composed by a biasing unit and a heating unit,as well as an emissive probe.With the set parameters of the probe scanning bias,the probe heating current and the fitting range,the apparatus can automatically execute the improved inflection point method and give the measured result.The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates,showing an excellent accuracy of 0.1 V.Plasma potential was also measured,exhibiting high efficiency and convenient use of the apparatus for space potential measurements.展开更多
We propose a Very Long Baseline Interferometry(VLBI)precision evaluation method for probe delay measurement,so as to investigate the error contributions from different components in the Chinese VLBI Network(CVN).This ...We propose a Very Long Baseline Interferometry(VLBI)precision evaluation method for probe delay measurement,so as to investigate the error contributions from different components in the Chinese VLBI Network(CVN).This method takes the idea of traditional closure delay analysis for distant radio sources.It focuses on the VLBI closure delay only and therefore excludes the influence of probe orbit determination,which makes it very suitable to evaluate the capability of VLBI probe delay measurement.In this paper,we first introduce the principles of closure delay analysis.Then the statistical results of typical CE5(Chinese Chang’e 5 lunar exploration mission)and HX1(Chinese Mars exploration mission)observations are presented,including the comparison of the closure delay precisions between CE5 and HX1 for four closed baseline triangles in CVN.According to the result,we realize that the precision discrepancy between CE5 and HX1 in the closure delay analysis is less than that of residual delay after orbit determination,which reflects the precision level of the VLBI delay measurement.展开更多
文摘This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.
基金the National Natural Science Foundation of China(Grant No.2000028416).
文摘While approaching the target body, the deep-space probe is orbiting hyperbolically before the maneuver. We discuss the variation of perturbed hyperbolic orbit using the method similar to that used in elliptic orbit. Ephemeris calculating and orbit control will benefit from the given analytical solution.
基金supported by National Natural Science Foundation of China(No.11675039)
文摘We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential.The apparatus consists of a computer controlled data acquisition card,a working circuit composed by a biasing unit and a heating unit,as well as an emissive probe.With the set parameters of the probe scanning bias,the probe heating current and the fitting range,the apparatus can automatically execute the improved inflection point method and give the measured result.The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates,showing an excellent accuracy of 0.1 V.Plasma potential was also measured,exhibiting high efficiency and convenient use of the apparatus for space potential measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.11973011,11573057,11903067,U1938114 and U1831137)National Science and Technology Basic Conditions Platform Project“National Basic Science Data Sharing Service Platform”(Grant No.DKA201712-02-09)Key Technical Talents of Chinese Academy of Sciences,Shanghai Outstanding Academic Leaders Plan,Lunar Exploration Project and Key Cultivation Projects of Shanghai Astronomical Observatory。
文摘We propose a Very Long Baseline Interferometry(VLBI)precision evaluation method for probe delay measurement,so as to investigate the error contributions from different components in the Chinese VLBI Network(CVN).This method takes the idea of traditional closure delay analysis for distant radio sources.It focuses on the VLBI closure delay only and therefore excludes the influence of probe orbit determination,which makes it very suitable to evaluate the capability of VLBI probe delay measurement.In this paper,we first introduce the principles of closure delay analysis.Then the statistical results of typical CE5(Chinese Chang’e 5 lunar exploration mission)and HX1(Chinese Mars exploration mission)observations are presented,including the comparison of the closure delay precisions between CE5 and HX1 for four closed baseline triangles in CVN.According to the result,we realize that the precision discrepancy between CE5 and HX1 in the closure delay analysis is less than that of residual delay after orbit determination,which reflects the precision level of the VLBI delay measurement.