China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts sugg...China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts suggest that this space telescope should be installed inside the Chinese space station. In accord with this suggestion we put forward our first configuration, i.e., to adopt a coude system for this telescope. This coude system comes from the Chinese 2.16 m telescope's coude system, which includes a relay mirror so that excellent image quality can be obtained. In our second configuration, we suggest that the whole space telescope fly freely as an independent satellite outside the space station. When it needs servicing, for example, changing in- struments, refilling refrigerant or propellant, etc., this space telescope can fly near or even dock with the core space station. Although some space stations have had accom- panying satellites, the one we propose is a space telescope that will be much larger than other accompanying satellites in terms of weight and volume. On the basis of the second configuration, we also put forward the following idea: the space station can be composed of several large independent modules if necessary.展开更多
Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations...Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.展开更多
Space exploration and utilization have surged in recent years,with the increasing interest of private space farers,in space tourism and business.This surge in space activities leads to a mounted concern for space disp...Space exploration and utilization have surged in recent years,with the increasing interest of private space farers,in space tourism and business.This surge in space activities leads to a mounted concern for space disputes between these actors,denoting devoir for an effective,efficient,adequate and swift dispute resolution framework.This paper presents a comprehensive analysis of the existing legal framework for outer space dispute resolution,the need for an effective,efficient and swift dispute resolution framework.Further this paper proposes an artificial intelligence(AI)forum for an outer space dispute resolution legal framework under the umbrella of the UNCOPUOS.展开更多
文摘China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts suggest that this space telescope should be installed inside the Chinese space station. In accord with this suggestion we put forward our first configuration, i.e., to adopt a coude system for this telescope. This coude system comes from the Chinese 2.16 m telescope's coude system, which includes a relay mirror so that excellent image quality can be obtained. In our second configuration, we suggest that the whole space telescope fly freely as an independent satellite outside the space station. When it needs servicing, for example, changing in- struments, refilling refrigerant or propellant, etc., this space telescope can fly near or even dock with the core space station. Although some space stations have had accom- panying satellites, the one we propose is a space telescope that will be much larger than other accompanying satellites in terms of weight and volume. On the basis of the second configuration, we also put forward the following idea: the space station can be composed of several large independent modules if necessary.
基金the Aeronautical Foundation of China(Grant No.2015ZA51013)the National Natural Science Foundation of China(Grant No.61673327)
文摘Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.
基金funded by the National Social Science Foundation of China(Grant No.20CFX078)the Science and Technology Innovation Project of the Beijing Institute of Technology.
文摘Space exploration and utilization have surged in recent years,with the increasing interest of private space farers,in space tourism and business.This surge in space activities leads to a mounted concern for space disputes between these actors,denoting devoir for an effective,efficient,adequate and swift dispute resolution framework.This paper presents a comprehensive analysis of the existing legal framework for outer space dispute resolution,the need for an effective,efficient and swift dispute resolution framework.Further this paper proposes an artificial intelligence(AI)forum for an outer space dispute resolution legal framework under the umbrella of the UNCOPUOS.