Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr)...In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr) is a bounded sequence of positive real numbers with pr ≥ 1 for all r ∈ N.展开更多
Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the ...Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the bases,and determine the Kothe-Toeplitz,generalized K?theToeplitz and bounded-duals of the space U(A^(ru)).We characterize the classes(l_(∞)(A^(ru)):l_(∞)),(l_(∞)(A^(ru)):c),(c(A^(ru)):c),and(U:V(A^(ru)))of infinite matrices,where V denotes any given sequence space.Additionally,we also present a Steinhaus type theorem.As an another result of this study,we investigate the l_(p)-norm of the matrix A^(ru)and as a result obtaining a generalized version of Hardy's inequality,and some inclusion relations.Moreover,we compute the norm of well-known operators on the matrix domain l_(p)(A^(ru)).展开更多
We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D)...We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.展开更多
As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the ...As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the space of almost convergent sequences is so new (see [15]). The purpose of this paper is to introduce the new spaces ^ ~f and fo consisting of all sequences whose Ceshro transforms of order one are in the spaces f and ^ ~ f0, respectively. Also, in this paper, we show that ^ ~f and ^ ~f0 are linearly isomorphic to the spaces f and f0, respectively. The β- and γ-duals of the spaces ^ ~f and 2% are computed. Furthermore, the classes (^ ~f: μ) and (μ : f) of infinite matrices are characterized for any given sequence space μ, and determined the necessary and sufficient conditions on a matrix A to satisfy Bc-core(Ax) K-core(x), K-core(Ax) Bg-core(x), Bc-core(Ax) Be-core(x), Bc-core(Ax) t-core(x) for all x ∈ t∞.展开更多
Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequali...Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.展开更多
In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _dua...In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _duals. The criterions of bounded sets in l 1(X) and l ∞(X ) with respect to the weak topologies generated by the σ _duals are obtained. Furthermore, a Schur type result and an automatic continuity theorem of matrix transformation are established.展开更多
In this paper, we discuss some basic properties of the Orlicz-Bochner sequence space l_M(X) and its subspace h_M(X). We present the equivalent definition of h_M(X), the sufficient and necessary conditions under which ...In this paper, we discuss some basic properties of the Orlicz-Bochner sequence space l_M(X) and its subspace h_M(X). We present the equivalent definition of h_M(X), the sufficient and necessary conditions under which l_^(M) (X) is complete, and l_M(X) and h_M(X) are separable respectively, and also give the sufficient condition that h_M(X) has a basis. All these results generalize the results for the classical Orlicz sequence spaces.展开更多
In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-di...In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).展开更多
In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix pr...In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.展开更多
This paper describes characteristics of (A p,α,l q) with 0【p≤1,α】0 and p≤q≤∞. As the corollaries, the characteristics of (A p,l q),(H p,l q),(G p,l q) and (B p,l q) with 0【p≤1 and p≤q≤∞ are ob...This paper describes characteristics of (A p,α,l q) with 0【p≤1,α】0 and p≤q≤∞. As the corollaries, the characteristics of (A p,l q),(H p,l q),(G p,l q) and (B p,l q) with 0【p≤1 and p≤q≤∞ are obtained. (H p,l q) and (H p,H q) with 1【p【∞ and 1≤q≤∞ are also studied.展开更多
In Orlicz-Lorentz sequence space Aψ,w with the Orlicz norm, uniform monotonic- ity, points of upper local uniform monotonicity and lower local uniform monotonicity are characterized. Moreover, the monotonicity coeffi...In Orlicz-Lorentz sequence space Aψ,w with the Orlicz norm, uniform monotonic- ity, points of upper local uniform monotonicity and lower local uniform monotonicity are characterized. Moreover, the monotonicity coefficient in Aψ,w are discussed.展开更多
In this paper we present sufficient conditions for reflexivity of any powers of the multiplication operator acting on Banach spaces of formal Laurent series.
Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Freml...Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Fremlin projective tensor product of lφ with a Banach lattice X, and in lφ iX, the Wittstock injective tensor product of lφ with a Banach lattice X.展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, w...The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, we give the counterexamples which show that previous results are not true.展开更多
The idea of difference sequence sets X(△) = {x = (xk) : △x ∈ X} with X = l∞, c and co was introduced by Kizmaz [12]. In this paper, using a sequence of moduli we define some generalized difference sequence sp...The idea of difference sequence sets X(△) = {x = (xk) : △x ∈ X} with X = l∞, c and co was introduced by Kizmaz [12]. In this paper, using a sequence of moduli we define some generalized difference sequence spaces and give some inclusion relations.展开更多
By the properties of the Musielak_Orlicz funciton's sequence, the necessary and sufficient condition for uniform Gateaux differential (UGD) property of Musielak_Orlicz sequence spaces equipped with the Luxemburg n...By the properties of the Musielak_Orlicz funciton's sequence, the necessary and sufficient condition for uniform Gateaux differential (UGD) property of Musielak_Orlicz sequence spaces equipped with the Luxemburg norm and a criterion for weakly uniform rotundity of Musielak_Orlicz sequence space with Orlicz norm are given.展开更多
In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
文摘In this paper, we define a new generalized difference sequence space involving lacunary sequence. Then, we examine k-NUC property and property (β) for this space and also show that it is not rotund where p = (pr) is a bounded sequence of positive real numbers with pr ≥ 1 for all r ∈ N.
文摘Let the triangle matrix A^(ru)be a generalization of the Cesàro matrix and U∈{c_(0),c,l_(∞)}.In this study,we essentially deal with the space U(A^(ru))defined by the domain of A^(ru)in the space U and give the bases,and determine the Kothe-Toeplitz,generalized K?theToeplitz and bounded-duals of the space U(A^(ru)).We characterize the classes(l_(∞)(A^(ru)):l_(∞)),(l_(∞)(A^(ru)):c),(c(A^(ru)):c),and(U:V(A^(ru)))of infinite matrices,where V denotes any given sequence space.Additionally,we also present a Steinhaus type theorem.As an another result of this study,we investigate the l_(p)-norm of the matrix A^(ru)and as a result obtaining a generalized version of Hardy's inequality,and some inclusion relations.Moreover,we compute the norm of well-known operators on the matrix domain l_(p)(A^(ru)).
文摘We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.
文摘As known, the method to obtain a sequence space by using convergence field of an infinite matrix is an old method in the theory of sequence spaces. However, the study of convergence field of an infinite matrix in the space of almost convergent sequences is so new (see [15]). The purpose of this paper is to introduce the new spaces ^ ~f and fo consisting of all sequences whose Ceshro transforms of order one are in the spaces f and ^ ~ f0, respectively. Also, in this paper, we show that ^ ~f and ^ ~f0 are linearly isomorphic to the spaces f and f0, respectively. The β- and γ-duals of the spaces ^ ~f and 2% are computed. Furthermore, the classes (^ ~f: μ) and (μ : f) of infinite matrices are characterized for any given sequence space μ, and determined the necessary and sufficient conditions on a matrix A to satisfy Bc-core(Ax) K-core(x), K-core(Ax) Bg-core(x), Bc-core(Ax) Be-core(x), Bc-core(Ax) t-core(x) for all x ∈ t∞.
基金Supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012429)Guangzhou Huashang College Research Team Project(Grant No.2021HSKT03)。
文摘Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.
文摘In this paper, the σ_duals of two classes important sequence spaces l 1(X) and l ∞(X) are investigated, and shows that some topology properties of locally convex space (X,τ) can be characterized by the σ _duals. The criterions of bounded sets in l 1(X) and l ∞(X ) with respect to the weak topologies generated by the σ _duals are obtained. Furthermore, a Schur type result and an automatic continuity theorem of matrix transformation are established.
文摘In this paper, we discuss some basic properties of the Orlicz-Bochner sequence space l_M(X) and its subspace h_M(X). We present the equivalent definition of h_M(X), the sufficient and necessary conditions under which l_^(M) (X) is complete, and l_M(X) and h_M(X) are separable respectively, and also give the sufficient condition that h_M(X) has a basis. All these results generalize the results for the classical Orlicz sequence spaces.
文摘In this article, using generalized weighted mean and difference matrix of order m, we introduce the paranormed sequence space l(u, v, p; △(m)), which consist of the sequences whose generalized weighted △(m)-difference means are in the linear space l(p) defined by I.J.Maddox. Also, we determine the basis of this space and compute its α-, β- and γ-duals. Further, we give the characterization of the classes of matrix mappings from l(u, v, p, △(m)) to l∞, c, and co. Finally, we apply the Hausdorff measure of noncompacness to characterize some classes of compact operators given by matrices on the space lp(U, v, △(m)) (1 ≤ p 〈 ∞).
文摘In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.
文摘This paper describes characteristics of (A p,α,l q) with 0【p≤1,α】0 and p≤q≤∞. As the corollaries, the characteristics of (A p,l q),(H p,l q),(G p,l q) and (B p,l q) with 0【p≤1 and p≤q≤∞ are obtained. (H p,l q) and (H p,H q) with 1【p【∞ and 1≤q≤∞ are also studied.
基金supported by the National Science Foundation of China(11271248 and 11302002)the National Science Research Project of Anhui Educational Department(KJ2012Z127)the PhD research startup foundation of Anhui Normal University
文摘In Orlicz-Lorentz sequence space Aψ,w with the Orlicz norm, uniform monotonic- ity, points of upper local uniform monotonicity and lower local uniform monotonicity are characterized. Moreover, the monotonicity coefficient in Aψ,w are discussed.
文摘In this paper we present sufficient conditions for reflexivity of any powers of the multiplication operator acting on Banach spaces of formal Laurent series.
文摘Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Fremlin projective tensor product of lφ with a Banach lattice X, and in lφ iX, the Wittstock injective tensor product of lφ with a Banach lattice X.
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No.10971129)
文摘The criterion for k-smooth points of the Orlicz sequence space endowed with the Orlicz norm is proved. The necessary and sufficient conditions of k-smoothness of l M and l (M ) are obtained, respectively. Finally, we give the counterexamples which show that previous results are not true.
文摘The idea of difference sequence sets X(△) = {x = (xk) : △x ∈ X} with X = l∞, c and co was introduced by Kizmaz [12]. In this paper, using a sequence of moduli we define some generalized difference sequence spaces and give some inclusion relations.
文摘By the properties of the Musielak_Orlicz funciton's sequence, the necessary and sufficient condition for uniform Gateaux differential (UGD) property of Musielak_Orlicz sequence spaces equipped with the Luxemburg norm and a criterion for weakly uniform rotundity of Musielak_Orlicz sequence space with Orlicz norm are given.
基金Sponsored by the National NSFC under grant No.19771063
文摘In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.