Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The search- ing for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting f...Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The search- ing for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (or Weyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11005053,11135001,and 11375074)the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0095)the Office of Naval Research (Grant No. N00014-08-1-0627)
文摘Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The search- ing for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (or Weyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.