Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the sam...Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.展开更多
Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from...Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.展开更多
In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (a...In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.展开更多
Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a c...Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.展开更多
Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme de...Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.展开更多
In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-acce...In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.展开更多
文摘Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.
基金supported by Shanghai Municipal Government and Nokia
文摘Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.
文摘In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.
文摘Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.
文摘Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.
文摘In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.