In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase e...In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase efficiency in target detection and improve system security, a blind source separation method is adopted for processing the conflicting signals received by satellites. Compared to traditional methods, we formulate the separation problem as a clustering problem. Since our algorithm is affected by the sparseness of source signals, to get satisfactory results, our algorithm assumes that the distance between two arbitrary mixed-signal vectors is less than the doubled sum of variances of distribution of the corresponding mixtures. Signal sparsity is overcome by computing the Short-Time Fourier Transform, and the mixed source signals are separated using the improved PSO clustering. We evaluated the performance and the robustness of the proposed network architecture by several simulations. The experimental results demonstrate the effectiveness of the proposed method in not only improving satellite signal receiving ability but also in enhancing space-based AIS security.展开更多
To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by...To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by satellite and interference ratio of signal received is presented in the paper. The altitude and footprint area of the AIS satellite are discussed to overcome the collision of messages transmitted in the different time slots fxom different SOTDMA (self organizing time division multiple access) cell areas, but arrive at the same time slot due to the different signal path lengths. The simulated result shows that compared to the normal LEO (low ear~ orbit) satellite system, on average the maximum signal coverage area and the maximum FOV (field of view) of the AIS satellite system are reduced by 74% and 38%. The majority of power of signal transmitted fi'om shipborne 12W-power AIS transmitters located within the maximum signal coverage area may be received with the sufficient margin of power of signal by the LEO satellite, but the space-based AIS system generally suffers from the insufficient CIR (carrier to co-channel interference ratio) of signal received since around 95% pairs of message simultaneously received by satellites may not be correctly decoded. The insufficient CIR of signal received is the bottleneck for the high message detection probability. Therefore, the measure of separating the collision messages should be further taken by the space-based AIS system to increase the detection probability.展开更多
基金supported by National Natural Science Foundation of China (No. 61821001)fully supported by Natural Science Foundation of China Project (61871422)+5 种基金Science and Technology Program of Sichuan Province (2020YFH0071)National Natural Science Foundation of China under Grant (61801319)in part by Sichuan Science and Technology Program under Grant (2020JDJQ0061), (2021YFG0099)in part by the Sichuan University of Science and Engineering Talent Introduction Project under Grant (2020RC33)Innovation Fund of Chinese Universities under Grant (2020HYA04001)Technology Key Project of Guangdong Province, China (2019B010157001)。
文摘In space-based Automatic Identification Systems(AIS), due to high satellite orbits, several Ad Hoc cells within the observation range of the satellite are vulnerable to interference by an external signal.To increase efficiency in target detection and improve system security, a blind source separation method is adopted for processing the conflicting signals received by satellites. Compared to traditional methods, we formulate the separation problem as a clustering problem. Since our algorithm is affected by the sparseness of source signals, to get satisfactory results, our algorithm assumes that the distance between two arbitrary mixed-signal vectors is less than the doubled sum of variances of distribution of the corresponding mixtures. Signal sparsity is overcome by computing the Short-Time Fourier Transform, and the mixed source signals are separated using the improved PSO clustering. We evaluated the performance and the robustness of the proposed network architecture by several simulations. The experimental results demonstrate the effectiveness of the proposed method in not only improving satellite signal receiving ability but also in enhancing space-based AIS security.
文摘To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by satellite and interference ratio of signal received is presented in the paper. The altitude and footprint area of the AIS satellite are discussed to overcome the collision of messages transmitted in the different time slots fxom different SOTDMA (self organizing time division multiple access) cell areas, but arrive at the same time slot due to the different signal path lengths. The simulated result shows that compared to the normal LEO (low ear~ orbit) satellite system, on average the maximum signal coverage area and the maximum FOV (field of view) of the AIS satellite system are reduced by 74% and 38%. The majority of power of signal transmitted fi'om shipborne 12W-power AIS transmitters located within the maximum signal coverage area may be received with the sufficient margin of power of signal by the LEO satellite, but the space-based AIS system generally suffers from the insufficient CIR (carrier to co-channel interference ratio) of signal received since around 95% pairs of message simultaneously received by satellites may not be correctly decoded. The insufficient CIR of signal received is the bottleneck for the high message detection probability. Therefore, the measure of separating the collision messages should be further taken by the space-based AIS system to increase the detection probability.