Compared with traditional ground asteroid observations, deep space exploration is an important way to explore and comprehensively understand the characteristics of asteroids. Imaging spectrometer integrates morphologi...Compared with traditional ground asteroid observations, deep space exploration is an important way to explore and comprehensively understand the characteristics of asteroids. Imaging spectrometer integrates morphological measurement and spectral measurement, and has the ability to acquire image and spectral data simultaneously. By combining morphometry and spectrometry, it is possible to achieve efficient identification and quantitative analysis of the chemical components of the exploration target, and has the strong advantage in the field of asteroid exploration. This paper analyzes the principle of the staring imaging spectrometer and the technological progress in various countries. Based on the requirements of light, small payloads and the space characteristics of spectroscopic devices, the application of staring imaging spectrometer is discussed. Then, this paper introduces the conceptual design of an acousto-optic staring imaging spectrometer, combined with the technical characteristics of its area array stare frame imaging and fast electronic control spectrum selection. An experimental verification is carried out, which provides a reference for the feasibility of this type of instrument in asteroid exploration.展开更多
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL...Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex g...In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.展开更多
Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve t...Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve this problem,researchers should get rid of the data acquired by these channels.Selecting abnormal channels just in the way of visually examining each band image in a imaging data set is a conceivably hard and boring job.To relieve the burden,this paper proposes a method which exploits the spatial and spectral autocorrelations inherent in imaging spectrometer data,and can be used to speed up and,to a great degree,automate the detection of abnormal channels in an imaging spectrometer.This method is applied easily and successfully to one PHI data set and one Hymap data set,and can be applied to remotely sensed data from other hyperspectral sensors.展开更多
A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rot...A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.展开更多
Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effect...Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effective approach to detect its presence in the early stage of infection.One potential solution is the use of Unmanned Airborne Vehicle(UAV)based hyperspectral images(HIs).UAV-based HIs have high spatial and spectral resolution and can gather data rapidly,potentially enabling the effective monitoring of large forests.Despite this,few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine.Method:To fill this gap,we used a Random Forest(RF)algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data(data directly collected from trees in the field).We compared relative accuracy of each of these data collection methods.We built our RF model using vegetation indices(VIs),red edge parameters(REPs),moisture indices(MIs),and their combination.Results:We report several key results.For ground data,the model that combined all parameters(OA:80.17%,Kappa:0.73)performed better than VIs(OA:75.21%,Kappa:0.66),REPs(OA:79.34%,Kappa:0.67),and MIs(OA:74.38%,Kappa:0.65)in predicting the PWD stage of individual pine tree infection.REPs had the highest accuracy(OA:80.33%,Kappa:0.58)in distinguishing trees at the early stage of PWD from healthy trees.UAV-based HI data yielded similar results:the model combined VIs,REPs and MIs(OA:74.38%,Kappa:0.66)exhibited the highest accuracy in estimating the PWD stage of sampled trees,and REPs performed best in distinguishing healthy trees from trees at early stage of PWD(OA:71.67%,Kappa:0.40).Conclusion:Overall,our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage,although its accuracy must be improved before widespread use is practical.We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data.We believe that these results can be used to improve preventative measures in the control of PWD.展开更多
The snapshot image mapping spectrometer(IMS) has advantages such as high temporal resolution,high throughput,compact structure and simple reconstructed algorithm.In recent years,it has been utilized in biomedicine,r...The snapshot image mapping spectrometer(IMS) has advantages such as high temporal resolution,high throughput,compact structure and simple reconstructed algorithm.In recent years,it has been utilized in biomedicine,remote sensing,etc.However,the system errors and various factors can cause cross talk,image degradation and spectral distortion in the system.In this research,a theoretical model is presented along with the point response function(PRF) for the IMS,and the influence of the mirror tilt angle error of the image mapper and the prism apex angle error are analyzed based on the model.The results indicate that the tilt angle error causes loss of light throughput and the prism apex angle error causes spectral mixing between adjacent sub-images.The light intensity on the image plane is reduced to 95%when the mirror tilt angle error is increased to ±100 "(≈ 0.028°).The prism apex error should be controlled within the range of 0-36"(0.01°)to ensure the designed number of spectral bands,and avoid spectral mixing between adjacent images.展开更多
A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onbo...A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onboard the advanced space-based solar observatory(ASO-S), which is scheduled to be launched in early 2022 as the first Chinese solar satellite. LaBr3 scintillators and photomultiplier tubes with a super bialkali cathode are used to achieve an energy resolution better than 20% at 30 keV.Further, a new multi-channel charge-sensitive readout application-specific integrated circuit guarantees high-frequency data acquisition with low power consumption. This paper presents a detailed design of the spectrometer for the engineering model of the HXI and discusses its noise and linearity performance.展开更多
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s...A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.展开更多
A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and ...A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and convenient for computation. In computer simulations with this method, projections of the object are detected by CCD while the object is rotating, and the original spectral images are numerically reconstructed from them by using the algorithm of computed-tomography. Simulation results indicate that the principle of the method is correct and it performs well for both broadband and narrow-band spectral objects.展开更多
Because of its all-reflective layout based on the Fresnel double-mirror interference system, the newly developed Fourier transform imaging spectrometer has a very large spectral bandwidth ranged from a cut-off wavelen...Because of its all-reflective layout based on the Fresnel double-mirror interference system, the newly developed Fourier transform imaging spectrometer has a very large spectral bandwidth ranged from a cut-off wavelength (related to the cut-off wave number σ max ) to far infrared. According to the signal's symmetry and wide-band characteristics, a simple method that can efficiently weaken the low frequency noise in the reconstructed spectrum is presented. Also, according to the symmetry, the eigenvector method is applied to the reconstruction of the spectrum.展开更多
The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imag...The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer(IES) onboard a Chinese navigation satellite in the inclined GEO orbit(IGSO) was introduced. The IES instrument is developed by the team in Peking University(BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis(PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.展开更多
An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures t...An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures the spectra of the energetic electrons with the energy range of 50–600 keV in nine directions. In this study, Monte Carlo simulations of the BD-IES sensor head were performed using Geant4 and the corresponding characteristic responses to the isotropic energetic particles were derived. The effective geometric factors were estimated using the typical electron and proton spectra in the GEO orbit and the corresponding simulated sensor head responses. It was found that the average effective geometric factors of nine directions are close to the nominal geometric factors calculated with the traditional method, but the effective geometric factor decreases as the center energy of the energy channel decreases. The BD-IES sensor head also responses to the energetic protons, but the average contamination rate of all 72 channels is about 2%, which means that the proton contamination is acceptable. The spectra of the energetic electrons measured by BD-IES are derived using the effective geometric factors of the sensor head and are comparable with the spectra measured by the magnetic electron ion spectrometer(MagEIS) instrument onboard Van Allen Probes.展开更多
The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton...The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.展开更多
This Letter proposes a snapshot imaging spectrometer, which obtains the spectral information and spatial information in one "shot". The device proposed can achieve the data cube size of 21 × 29 × 4...This Letter proposes a snapshot imaging spectrometer, which obtains the spectral information and spatial information in one "shot". The device proposed can achieve the data cube size of 21 × 29 × 40 in the waveband of400–800 nm. The core element of this system is the microlens array, which contains 60 × 60 microlenses in a square arrangement, each microlens has an aperture of 125 μm× 125 μm, and the F number is 15. The microlens array is mounted in a rotation mount, which provides 360° of rotation around the optical axis to maximize the spectral resolution. The final resolution of the system is about 10 nm.展开更多
We present the design,fabrication and characterization of hydraulically-tunable hyperchromatic lenses for two-dimensional(2D)spectrally-resolved spectral imaging.These hyperchromatic lenses,consisting of a positive di...We present the design,fabrication and characterization of hydraulically-tunable hyperchromatic lenses for two-dimensional(2D)spectrally-resolved spectral imaging.These hyperchromatic lenses,consisting of a positive diffractive lens and a tunable concave lens,are designed to have a large longitudinal chromatic dispersion and the images of different wavelengths from each other.2D objects of different wavelengths can consequently be imaged using the tunability of the lens system.Two hyperchromatic lens concepts are demonstrated and their spectral characteristics as well as their functionality in spectral imaging applications are shown.展开更多
Energetic electron measurement is of great significance to theoretical space physics research and space weather applications.Current energetic electron detectors must cooperate with a spin-stabilized satellite platfor...Energetic electron measurement is of great significance to theoretical space physics research and space weather applications.Current energetic electron detectors must cooperate with a spin-stabilized satellite platform to achieve high angular resolution in pitch angle distribution and three-dimensional(3D)imaging measurement of energetic electrons.This article introduces a cross-type quasi-3D imaging electron spectrometer(IES)based on pinhole imaging technology developed in the laboratory.The imager is composed of five imaging units,including a nine-pixel area array Si-PIN detector imaging unit in the middle and four three-pixel linear array Si-PIN detector imaging units placed in a cross-shape around it.The combination of five imaging units forms two orthogonal nine-pixel linear array detectors(with a common pixel in the middle).There are four pixels with a view angle of 20°×20°in the 45°oblique directions of the cross-type detection array.There are 21 imaging pixels in the entire crosstype sensor head,corresponding to 21 directions.Two multichannel integrated preamplifier ASICs are integrated in the sensor head to realize particle signal readout from 21 pixels.With a back-end electronics system,each pixel can achieve high energy resolution detection of 50–600 keV electrons.Radioactive sources and electron accelerators are used to calibrate the cross-type imaging sensor head,and the results demonstrate its good energy and directional detection characteristics(the energy resolution reaches 6.9 keV for the incident 200 keV electron beam).We performed simulations on the imaging sensor head’s ability to measure the electron pitch angle distribution on the three-axis stabilized platform,and the results show that the sensor head can perform quasi-three-dimensional detection of electrons incident within 2πsolid angles on the three-axis stabilized satellite platform,with an average angular resolution of the electron pitch angle distribution of less than 6°.展开更多
A double-pass grating imaging spectrometer is proposed and demonstrated. The traditional entrance slit is replaced by a middle reflective slit, which is used as a spectral filter rather than a spatial filter. The ligh...A double-pass grating imaging spectrometer is proposed and demonstrated. The traditional entrance slit is replaced by a middle reflective slit, which is used as a spectral filter rather than a spatial filter. The light from the scene passes through the same dispersive grating twice. The full image of the scene can be obtained with a snapshot. Therefore, the stripe noise and image distortion caused by image mosaicking can be eliminated.Besides, the target is easier to be captured and focused, just like using a camera. This method can be used to obtain clearer spectral images of the scene conveniently and quickly.展开更多
Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of s...Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.展开更多
文摘Compared with traditional ground asteroid observations, deep space exploration is an important way to explore and comprehensively understand the characteristics of asteroids. Imaging spectrometer integrates morphological measurement and spectral measurement, and has the ability to acquire image and spectral data simultaneously. By combining morphometry and spectrometry, it is possible to achieve efficient identification and quantitative analysis of the chemical components of the exploration target, and has the strong advantage in the field of asteroid exploration. This paper analyzes the principle of the staring imaging spectrometer and the technological progress in various countries. Based on the requirements of light, small payloads and the space characteristics of spectroscopic devices, the application of staring imaging spectrometer is discussed. Then, this paper introduces the conceptual design of an acousto-optic staring imaging spectrometer, combined with the technical characteristics of its area array stare frame imaging and fast electronic control spectrum selection. An experimental verification is carried out, which provides a reference for the feasibility of this type of instrument in asteroid exploration.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205101)the Shenzhen Municipal Research Foundation,China(Grant Nos.GJHZ201404171134305 and JCYJ20140417113130693)the Marie Curie Actions-International Research Staff Exchange Scheme(IRSES)(Grant No.FP7 PIRSES-2013-612267)
文摘Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA03A116)
文摘In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.
文摘Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve this problem,researchers should get rid of the data acquired by these channels.Selecting abnormal channels just in the way of visually examining each band image in a imaging data set is a conceivably hard and boring job.To relieve the burden,this paper proposes a method which exploits the spatial and spectral autocorrelations inherent in imaging spectrometer data,and can be used to speed up and,to a great degree,automate the detection of abnormal channels in an imaging spectrometer.This method is applied easily and successfully to one PHI data set and one Hymap data set,and can be applied to remotely sensed data from other hyperspectral sensors.
基金supported by National Natural Science Foundation of China(Nos.11175208,11305212 and 11405212)the National Magnetic Confinement Fusion Science Program of China(No.2013GB112004)JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.
基金funded by the National Key Research&Development Program of China(2018YFD0600200)Beijing’s Science and Technology Planning Project(Z191100008519004)Major emergency science and technology projects of National Forestry and Grassland Administration(ZD202001–05).
文摘Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effective approach to detect its presence in the early stage of infection.One potential solution is the use of Unmanned Airborne Vehicle(UAV)based hyperspectral images(HIs).UAV-based HIs have high spatial and spectral resolution and can gather data rapidly,potentially enabling the effective monitoring of large forests.Despite this,few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine.Method:To fill this gap,we used a Random Forest(RF)algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data(data directly collected from trees in the field).We compared relative accuracy of each of these data collection methods.We built our RF model using vegetation indices(VIs),red edge parameters(REPs),moisture indices(MIs),and their combination.Results:We report several key results.For ground data,the model that combined all parameters(OA:80.17%,Kappa:0.73)performed better than VIs(OA:75.21%,Kappa:0.66),REPs(OA:79.34%,Kappa:0.67),and MIs(OA:74.38%,Kappa:0.65)in predicting the PWD stage of individual pine tree infection.REPs had the highest accuracy(OA:80.33%,Kappa:0.58)in distinguishing trees at the early stage of PWD from healthy trees.UAV-based HI data yielded similar results:the model combined VIs,REPs and MIs(OA:74.38%,Kappa:0.66)exhibited the highest accuracy in estimating the PWD stage of sampled trees,and REPs performed best in distinguishing healthy trees from trees at early stage of PWD(OA:71.67%,Kappa:0.40).Conclusion:Overall,our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage,although its accuracy must be improved before widespread use is practical.We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data.We believe that these results can be used to improve preventative measures in the control of PWD.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61635002 and 61307020)the Changjiang Scholars and Innovative Research Team in University(PCSIRT)Program,China
文摘The snapshot image mapping spectrometer(IMS) has advantages such as high temporal resolution,high throughput,compact structure and simple reconstructed algorithm.In recent years,it has been utilized in biomedicine,remote sensing,etc.However,the system errors and various factors can cause cross talk,image degradation and spectral distortion in the system.In this research,a theoretical model is presented along with the point response function(PRF) for the IMS,and the influence of the mirror tilt angle error of the image mapper and the prism apex angle error are analyzed based on the model.The results indicate that the tilt angle error causes loss of light throughput and the prism apex angle error causes spectral mixing between adjacent sub-images.The light intensity on the image plane is reduced to 95%when the mirror tilt angle error is increased to ±100 "(≈ 0.028°).The prism apex error should be controlled within the range of 0-36"(0.01°)to ensure the designed number of spectral bands,and avoid spectral mixing between adjacent images.
基金supported by the Strategic Priority Program Stage Ⅱ on Space Science of Chinese Academy of Sciences(No.XDA15320104)the National Natural Science Foundation of China(Nos.11703097,11427803,11820101002,11622327,11773087,U1631116,and 11803093)
文摘A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager(HXI). The HXI is one of the three payloads onboard the advanced space-based solar observatory(ASO-S), which is scheduled to be launched in early 2022 as the first Chinese solar satellite. LaBr3 scintillators and photomultiplier tubes with a super bialkali cathode are used to achieve an energy resolution better than 20% at 30 keV.Further, a new multi-channel charge-sensitive readout application-specific integrated circuit guarantees high-frequency data acquisition with low power consumption. This paper presents a detailed design of the spectrometer for the engineering model of the HXI and discusses its noise and linearity performance.
文摘A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.
文摘A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and convenient for computation. In computer simulations with this method, projections of the object are detected by CCD while the object is rotating, and the original spectral images are numerically reconstructed from them by using the algorithm of computed-tomography. Simulation results indicate that the principle of the method is correct and it performs well for both broadband and narrow-band spectral objects.
文摘Because of its all-reflective layout based on the Fresnel double-mirror interference system, the newly developed Fourier transform imaging spectrometer has a very large spectral bandwidth ranged from a cut-off wavelength (related to the cut-off wave number σ max ) to far infrared. According to the signal's symmetry and wide-band characteristics, a simple method that can efficiently weaken the low frequency noise in the reconstructed spectrum is presented. Also, according to the symmetry, the eigenvector method is applied to the reconstruction of the spectrum.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41374167 & 41421003)Major Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2012CB825603)
文摘The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer(IES) onboard a Chinese navigation satellite in the inclined GEO orbit(IGSO) was introduced. The IES instrument is developed by the team in Peking University(BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis(PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41374167, 41421003)the Major Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2012CB825603)
文摘An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures the spectra of the energetic electrons with the energy range of 50–600 keV in nine directions. In this study, Monte Carlo simulations of the BD-IES sensor head were performed using Geant4 and the corresponding characteristic responses to the isotropic energetic particles were derived. The effective geometric factors were estimated using the typical electron and proton spectra in the GEO orbit and the corresponding simulated sensor head responses. It was found that the average effective geometric factors of nine directions are close to the nominal geometric factors calculated with the traditional method, but the effective geometric factor decreases as the center energy of the energy channel decreases. The BD-IES sensor head also responses to the energetic protons, but the average contamination rate of all 72 channels is about 2%, which means that the proton contamination is acceptable. The spectra of the energetic electrons measured by BD-IES are derived using the effective geometric factors of the sensor head and are comparable with the spectra measured by the magnetic electron ion spectrometer(MagEIS) instrument onboard Van Allen Probes.
基金supported by the National Natural Science Foundation of China(Grant Nos.41374166,41374167,41074117 and 41421003)Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘The measurement of energetic particles plays an important role in the space environment monitoring and space weather forecasting.The accuracy of the energetic electron measurement is seriously influenced by the proton contamination.An anti-proton contamination design for the sensor of imaging energetic electron spectrometer is introduced in this paper.According to the electron and proton spectrum on the typical satellite orbits calculated by the radiation belt models,the efficiency of the anti-proton contamination design is estimated by the Geant4 simulation and the design is optimized based on the simulation results.
文摘This Letter proposes a snapshot imaging spectrometer, which obtains the spectral information and spatial information in one "shot". The device proposed can achieve the data cube size of 21 × 29 × 40 in the waveband of400–800 nm. The core element of this system is the microlens array, which contains 60 × 60 microlenses in a square arrangement, each microlens has an aperture of 125 μm× 125 μm, and the F number is 15. The microlens array is mounted in a rotation mount, which provides 360° of rotation around the optical axis to maximize the spectral resolution. The final resolution of the system is about 10 nm.
基金This work was funded by the German Federal Ministry of Education and Research.
文摘We present the design,fabrication and characterization of hydraulically-tunable hyperchromatic lenses for two-dimensional(2D)spectrally-resolved spectral imaging.These hyperchromatic lenses,consisting of a positive diffractive lens and a tunable concave lens,are designed to have a large longitudinal chromatic dispersion and the images of different wavelengths from each other.2D objects of different wavelengths can consequently be imaged using the tunability of the lens system.Two hyperchromatic lens concepts are demonstrated and their spectral characteristics as well as their functionality in spectral imaging applications are shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.42274225,41374167 and 41674175)。
文摘Energetic electron measurement is of great significance to theoretical space physics research and space weather applications.Current energetic electron detectors must cooperate with a spin-stabilized satellite platform to achieve high angular resolution in pitch angle distribution and three-dimensional(3D)imaging measurement of energetic electrons.This article introduces a cross-type quasi-3D imaging electron spectrometer(IES)based on pinhole imaging technology developed in the laboratory.The imager is composed of five imaging units,including a nine-pixel area array Si-PIN detector imaging unit in the middle and four three-pixel linear array Si-PIN detector imaging units placed in a cross-shape around it.The combination of five imaging units forms two orthogonal nine-pixel linear array detectors(with a common pixel in the middle).There are four pixels with a view angle of 20°×20°in the 45°oblique directions of the cross-type detection array.There are 21 imaging pixels in the entire crosstype sensor head,corresponding to 21 directions.Two multichannel integrated preamplifier ASICs are integrated in the sensor head to realize particle signal readout from 21 pixels.With a back-end electronics system,each pixel can achieve high energy resolution detection of 50–600 keV electrons.Radioactive sources and electron accelerators are used to calibrate the cross-type imaging sensor head,and the results demonstrate its good energy and directional detection characteristics(the energy resolution reaches 6.9 keV for the incident 200 keV electron beam).We performed simulations on the imaging sensor head’s ability to measure the electron pitch angle distribution on the three-axis stabilized platform,and the results show that the sensor head can perform quasi-three-dimensional detection of electrons incident within 2πsolid angles on the three-axis stabilized satellite platform,with an average angular resolution of the electron pitch angle distribution of less than 6°.
基金partially supported by the Natural Science Foundation of Anhui Province(No.1808085QF201)the China Postdoctoral Science Foundation(No.2018M630773)the Fundamental Research Funds of Shandong University(No.11170077614092)
文摘A double-pass grating imaging spectrometer is proposed and demonstrated. The traditional entrance slit is replaced by a middle reflective slit, which is used as a spectral filter rather than a spatial filter. The light from the scene passes through the same dispersive grating twice. The full image of the scene can be obtained with a snapshot. Therefore, the stripe noise and image distortion caused by image mosaicking can be eliminated.Besides, the target is easier to be captured and focused, just like using a camera. This method can be used to obtain clearer spectral images of the scene conveniently and quickly.
基金supported by the National Natural Science Foundation of China(No.41474161)the National High Technology Research and Development Program of China(No.2015AA123703)
文摘Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.