In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel secon...We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel second fundamental form in Np(n+p) and some other ambient spaces. We obtain some distribution theorems for the square norm of the second fundamental form.展开更多
In this paper,we study the complete space-like submanifold Mn with constant scalar curvature R≤c in the de Sitter space Spn+p(c) and obtain a pinching condition for Mn to be totally umbilical ones.The result generali...In this paper,we study the complete space-like submanifold Mn with constant scalar curvature R≤c in the de Sitter space Spn+p(c) and obtain a pinching condition for Mn to be totally umbilical ones.The result generalizes that in [5,Main Theorem] to higher codimension and give a complement for n=2 there.展开更多
Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spaceti...Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spacetime Sp^m+p∪→Ep^m+p+1 (P ≥ 1) must be totally umbilical, and also totally geodesic. Particularly, when p = 1, our result is just Montiel's in case of H = 0.展开更多
The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We firs...The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.展开更多
Based on the special theory of relativity in space-like continuum, the pre-sent author points that if there exist tachyons in nature, they should be neutral point-like particles with lepton appearance, which are very ...Based on the special theory of relativity in space-like continuum, the pre-sent author points that if there exist tachyons in nature, they should be neutral point-like particles with lepton appearance, which are very much like our early understanding about neutrinos before. The author also points that an alternative explanation for neutrino oscillations may be the conversion between mass-less neutrinos with different flavors expressed in different “lowest limited momentum” during their flight journey, which originates from that the argument in the squared sine function of the probability of neutrino oscillation may be less than zero, which is mathematical foresight and may not be ignored.展开更多
In this paper,an intrinsic, condition for a Compact Space-like hypersurface with constant scalar curvature in a de Sitter space to be totally umbilical is obtained.
We study space-like self-shrinkers of dimension n in pseudo-Euclidean space Rm^m+n with index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates in pseudo-distance functi...We study space-like self-shrinkers of dimension n in pseudo-Euclidean space Rm^m+n with index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms of the mean curvature or the image of Gauss maps.展开更多
Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X....Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X. If each pair of curves f and g in F share the set {Q_1(z),…, Q_(2t+1)(z)}, then F is normal on D. This result greatly extend some earlier theorems related to Montel's criterion.展开更多
For the maximal space-like hypersurface defined on 2-dimensional space forms,based on the regularity and the strict convexity of the level sets,the steepest descents are well defined.In this paper,we come to estimate ...For the maximal space-like hypersurface defined on 2-dimensional space forms,based on the regularity and the strict convexity of the level sets,the steepest descents are well defined.In this paper,we come to estimate the curvature of its steepest descents by deriving a differential equality.展开更多
In this paper we study the complete space-like λ-surfaces in the three dimensional Minkowski space R1^3.As the result,we obtain a complete classification theorem for all the complete space-like λ-surfaces x:M^2→R1^...In this paper we study the complete space-like λ-surfaces in the three dimensional Minkowski space R1^3.As the result,we obtain a complete classification theorem for all the complete space-like λ-surfaces x:M^2→R1^3 with the second fundamental form of constant length.This is a natural extension to the λ-surfaces in R1^3 of a recent interesting classification theorem by Cheng and Wei forλ-surfaces in the Euclidean space R^3.展开更多
Let M be a smooth pseudoconvex hypersurface in ℂ^(n+1) whose Levi form has at most one degenerate eigenvalue. For any tangent vector field L of type (1, 0), we prove the equality of the commutator type and the Levi fo...Let M be a smooth pseudoconvex hypersurface in ℂ^(n+1) whose Levi form has at most one degenerate eigenvalue. For any tangent vector field L of type (1, 0), we prove the equality of the commutator type and the Levi form type associated to L. We also show that the regular contact type, the commutator type and the Levi form type of the real hypersurface are the same.展开更多
Complete space-like submanifolds in a de Sitter Space with parallel mean curvature vector are investigated, a main Theorem for M to be totally umbilical is obtained.
The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form ...Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.展开更多
文摘In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
文摘We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel second fundamental form in Np(n+p) and some other ambient spaces. We obtain some distribution theorems for the square norm of the second fundamental form.
文摘In this paper,we study the complete space-like submanifold Mn with constant scalar curvature R≤c in the de Sitter space Spn+p(c) and obtain a pinching condition for Mn to be totally umbilical ones.The result generalizes that in [5,Main Theorem] to higher codimension and give a complement for n=2 there.
文摘Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spacetime Sp^m+p∪→Ep^m+p+1 (P ≥ 1) must be totally umbilical, and also totally geodesic. Particularly, when p = 1, our result is just Montiel's in case of H = 0.
文摘The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.
文摘Based on the special theory of relativity in space-like continuum, the pre-sent author points that if there exist tachyons in nature, they should be neutral point-like particles with lepton appearance, which are very much like our early understanding about neutrinos before. The author also points that an alternative explanation for neutrino oscillations may be the conversion between mass-less neutrinos with different flavors expressed in different “lowest limited momentum” during their flight journey, which originates from that the argument in the squared sine function of the probability of neutrino oscillation may be less than zero, which is mathematical foresight and may not be ignored.
文摘In this paper,an intrinsic, condition for a Compact Space-like hypersurface with constant scalar curvature in a de Sitter space to be totally umbilical is obtained.
基金Supported by National Natural Science Foundation of China(Grant No.11271072)He’nan University Seed Fund
文摘We study space-like self-shrinkers of dimension n in pseudo-Euclidean space Rm^m+n with index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms of the mean curvature or the image of Gauss maps.
基金The NSF(11701006,11471163) of Chinathe NSF(1808085QA02) of Anhui Province
文摘Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X. If each pair of curves f and g in F share the set {Q_1(z),…, Q_(2t+1)(z)}, then F is normal on D. This result greatly extend some earlier theorems related to Montel's criterion.
基金the National Natural Science Foundation of China(Grant No.11471188)the STPF of Shandong Province(No.J17KA161).
文摘For the maximal space-like hypersurface defined on 2-dimensional space forms,based on the regularity and the strict convexity of the level sets,the steepest descents are well defined.In this paper,we come to estimate the curvature of its steepest descents by deriving a differential equality.
基金Supported by Natural Science Foundation of China(Grant Nos.11671121,11871197 and 11971153)。
文摘In this paper we study the complete space-like λ-surfaces in the three dimensional Minkowski space R1^3.As the result,we obtain a complete classification theorem for all the complete space-like λ-surfaces x:M^2→R1^3 with the second fundamental form of constant length.This is a natural extension to the λ-surfaces in R1^3 of a recent interesting classification theorem by Cheng and Wei forλ-surfaces in the Euclidean space R^3.
基金The third author was supported in part by NSFC(12171372).
文摘Let M be a smooth pseudoconvex hypersurface in ℂ^(n+1) whose Levi form has at most one degenerate eigenvalue. For any tangent vector field L of type (1, 0), we prove the equality of the commutator type and the Levi form type associated to L. We also show that the regular contact type, the commutator type and the Levi form type of the real hypersurface are the same.
文摘Complete space-like submanifolds in a de Sitter Space with parallel mean curvature vector are investigated, a main Theorem for M to be totally umbilical is obtained.
基金Supported the NSF of the Education Department of Jiangsu Province(04KJD110192)
文摘The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
文摘Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered.