Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the a...Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.展开更多
The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme sit...The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.展开更多
Flat supersymmetric space-time (x, θ) has been discussed under assumption that the Fermi variables are symplectic vectors only. We have abandoned the traditional assumption, that it must be the spinor representation ...Flat supersymmetric space-time (x, θ) has been discussed under assumption that the Fermi variables are symplectic vectors only. We have abandoned the traditional assumption, that it must be the spinor representation of Lorentz group, which makes in the usual theory of supersymmetry.The even and odd generators of the ortho-symplectic group OS_p(414) have been calculated concretely in its dyads representation.New superfields, Lagrangian and the action integral, different from the usual theory, have been introduced in this flat case.展开更多
Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articl...Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.展开更多
Reinforcement theory is a behavioral psychology theory proposed by Skinner,which has been widely applied in various fields such as management and education.Positive reinforcement and negative reinforcement are the two...Reinforcement theory is a behavioral psychology theory proposed by Skinner,which has been widely applied in various fields such as management and education.Positive reinforcement and negative reinforcement are the two types of reinforcement.By adopting these two different reinforcement methods appropriately,human behavior can develop in a positive direction.In the review stage of English teaching and learning in Chinese higher vocational and technical colleges,the use of different reinforcement methods based on various classes,individuals,conditions,and environments can effectively promote or change the behavior of teachers and students,thereby improving the effectiveness of the review.展开更多
Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Prac...Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Practice shows that the schema theory application to guide teaching practice can achieve great progress in an English listening classroom.展开更多
Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Prac...Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Practice shows that the schema theory application to guide teaching practice can achieve great progress in an English listening classroom.展开更多
A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential meth...A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential method.All types of pores are simultaneously introduced to the composite during the differential iteration process according to the ratio of their volume fractions.Based on this model,the effects of pore structures on predicted pore-pressure in carbonates were analyzed.Calculation results indicate that cracks with low pore aspect ratios lead to pore-pressure overestimation which results in lost circulation and reservoir damage.However,moldic pores and vugs with high pore aspect ratios lead to pore-pressure underestimation which results in well kick and even blowout.The pore-pressure deviation due to cracks and moldic pores increases with an increase in porosity.For carbonates with complex pore structures,adopting conventional pore-pressure prediction methods and casing program designs will expose the well drilling engineering to high uncertainties.Velocity prediction models considering the influence of pore structure need to be built to improve the reliability and accuracy of pore-pressure prediction in carbonates.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is...Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is investigated based onwave motion theories; in addition, the experimental study of the hull plate load is carried out. According to the theoreticalanalysis of the hull plate pressure, we find that the hull plate pressure oscillates repeatedly and decays rapidly with timepassing, the maximum hull plate pressure is 2/(1+n) times the maximum free field pressure, where n is the ratio ofimpedance, and the impulse is much smaller than the free field impulse. Compared with the experimental study, thetheoretical results agree well with the experimental data.展开更多
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform...Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.展开更多
Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties...Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.展开更多
In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found th...In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg2Si under uniaxial strain have been explored first time in this report.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecula...Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecular models.Herein,by taking the case study of nucleophilic addition reaction in aqueous solution,we extend the proposed multiscale reaction density functional theory(RxDFT)method to investigate the intrinsic free energy profile and total free energy profile,and study the solvent effect on the activation and reaction free energy for the nucleophilic addition reactions of hydroxide anion with methanal and carbon dioxide in aqueous solution.The predictions of the free energy profile in aqueous solution for these two nucleophilic addition reactions from RxDFT have a satisfactory agreement with the results from the RISM and MD-FEP simulation.Meanwhile,the solvent effect is successfully addressed by examining the difference of the free energy profile between the gas phase and aqueous phase.In addition,we investigate the solvent effect on the reactions occurred near solid-liquid interfaces.It is shown that the activation free energy is significantly depressed when reaction takes place in the region within 10A distance to the substrate surface owing to the decrease of hydration free energy at the solid-liquid interface.展开更多
Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body ...Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.展开更多
We study the effect of pressure on electronic and thermoelectric properties of Mg_2Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus wi...We study the effect of pressure on electronic and thermoelectric properties of Mg_2Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties(Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg_2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity.The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg_2Si at zero pressure. The maximum value of figure of merit is attained 1.83 × 10^(-3) at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.展开更多
Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an e...Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tome and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tome and de Oliveira; hence the dynamic phase diagrams calculated by Shiet al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (w) and static external field amplitude (h0) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of w and h0.展开更多
The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smal...The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.展开更多
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
文摘Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.
文摘The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.
文摘Flat supersymmetric space-time (x, θ) has been discussed under assumption that the Fermi variables are symplectic vectors only. We have abandoned the traditional assumption, that it must be the spinor representation of Lorentz group, which makes in the usual theory of supersymmetry.The even and odd generators of the ortho-symplectic group OS_p(414) have been calculated concretely in its dyads representation.New superfields, Lagrangian and the action integral, different from the usual theory, have been introduced in this flat case.
文摘Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.
文摘Reinforcement theory is a behavioral psychology theory proposed by Skinner,which has been widely applied in various fields such as management and education.Positive reinforcement and negative reinforcement are the two types of reinforcement.By adopting these two different reinforcement methods appropriately,human behavior can develop in a positive direction.In the review stage of English teaching and learning in Chinese higher vocational and technical colleges,the use of different reinforcement methods based on various classes,individuals,conditions,and environments can effectively promote or change the behavior of teachers and students,thereby improving the effectiveness of the review.
文摘Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Practice shows that the schema theory application to guide teaching practice can achieve great progress in an English listening classroom.
文摘Based on the schema theory,the paper analyzes the psychological cognitive process of listening comprehension.Schema theory provides a good theoretical basis to improve the English listening teaching effectiveness.Practice shows that the schema theory application to guide teaching practice can achieve great progress in an English listening classroom.
基金the financial support from the National Natural Science Foundation of China (No. 51274230)the Natural Science Foundation of Shandong Province (No. ZR2012EEL01)the Fundamental Research Funds for the Central Universities (No. 14CX02040A and No. 14CX06023A)
文摘A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential method.All types of pores are simultaneously introduced to the composite during the differential iteration process according to the ratio of their volume fractions.Based on this model,the effects of pore structures on predicted pore-pressure in carbonates were analyzed.Calculation results indicate that cracks with low pore aspect ratios lead to pore-pressure overestimation which results in lost circulation and reservoir damage.However,moldic pores and vugs with high pore aspect ratios lead to pore-pressure underestimation which results in well kick and even blowout.The pore-pressure deviation due to cracks and moldic pores increases with an increase in porosity.For carbonates with complex pore structures,adopting conventional pore-pressure prediction methods and casing program designs will expose the well drilling engineering to high uncertainties.Velocity prediction models considering the influence of pore structure need to be built to improve the reliability and accuracy of pore-pressure prediction in carbonates.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279038 and 51109042)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E201124)
文摘Owing to the existence of the flow field boundary, the shock wave load near the boundary is different from the freefield shock wave load. In the present paper, the hull plate load subjected to underwater shock wave is investigated based onwave motion theories; in addition, the experimental study of the hull plate load is carried out. According to the theoreticalanalysis of the hull plate pressure, we find that the hull plate pressure oscillates repeatedly and decays rapidly with timepassing, the maximum hull plate pressure is 2/(1+n) times the maximum free field pressure, where n is the ratio ofimpedance, and the impulse is much smaller than the free field impulse. Compared with the experimental study, thetheoretical results agree well with the experimental data.
基金The authors would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.
文摘Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
基金Council of Scientific&Industrial Research(CSIR),India for providing fellowship.
文摘In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg2Si under uniaxial strain have been explored first time in this report.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
基金supported by National Natural Science Foundation of China(Nos.91934302,21878078 and 21808056)。
文摘Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept,solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecular models.Herein,by taking the case study of nucleophilic addition reaction in aqueous solution,we extend the proposed multiscale reaction density functional theory(RxDFT)method to investigate the intrinsic free energy profile and total free energy profile,and study the solvent effect on the activation and reaction free energy for the nucleophilic addition reactions of hydroxide anion with methanal and carbon dioxide in aqueous solution.The predictions of the free energy profile in aqueous solution for these two nucleophilic addition reactions from RxDFT have a satisfactory agreement with the results from the RISM and MD-FEP simulation.Meanwhile,the solvent effect is successfully addressed by examining the difference of the free energy profile between the gas phase and aqueous phase.In addition,we investigate the solvent effect on the reactions occurred near solid-liquid interfaces.It is shown that the activation free energy is significantly depressed when reaction takes place in the region within 10A distance to the substrate surface owing to the decrease of hydration free energy at the solid-liquid interface.
基金the Major Program of National Natural Science Foundation of China(No.41941019)Shaanxi Province Innovative Talent Promotion Plan-Science and Technology Innovation Team(No.2021TD-55)Central University Natural Science Innovation Team(No.300102262402)。
文摘Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.
基金Project supported by the Council of Scientific&Industrial Research(CSIR),India
文摘We study the effect of pressure on electronic and thermoelectric properties of Mg_2Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties(Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg_2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity.The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg_2Si at zero pressure. The maximum value of figure of merit is attained 1.83 × 10^(-3) at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.
基金Project supported by the Scientific and Technological Research Council of Turkey (TBTAK) (Grant No. 107T533)the Erciyes University Research Funds (Grant Nos. FBA-06-01 and FBD-08-593)
文摘Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tome and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tome and de Oliveira; hence the dynamic phase diagrams calculated by Shiet al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (w) and static external field amplitude (h0) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of w and h0.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60521001 and 60325416).
文摘The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.