Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif...Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ...The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.展开更多
Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrat...Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.展开更多
In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe...In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit...Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.展开更多
This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter mod...This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.展开更多
A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon a...A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to ...For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to estimate the approximative covariance matrix in the non-homogeneous condition. According to the statistical characteristics of the space-time snapshot data, via defining the aggregate snapshot data and corresponding events, the conditional probability of the space-time snapshot data which is the effective training data is given, then the weighting coefficients are obtained for the weighting method. The theory analysis indicates that the statistical methods of the Bayes and likelihood criterion for covariance matrix estimation are more reasonable than other methods that estimate the covariance matrix with the use of training data except the detected outliers. The last simulations attest that the proposed algorithms can estimate the covariance in the non-homogeneous condition exactly and have favorable characteristics.展开更多
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by ...A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.展开更多
In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is respons...In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was...The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.展开更多
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm...Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.展开更多
DQPSK modem has been chosen as the modem scheme in many mobile communication systems. A new signal processing technique of π/4-DQPSK modem based on software radio is discussed in this paper. Unlike many other softwar...DQPSK modem has been chosen as the modem scheme in many mobile communication systems. A new signal processing technique of π/4-DQPSK modem based on software radio is discussed in this paper. Unlike many other software radio solutions to the subject, we choose a universal digital radio baseband processor operating as the co-processor of DSP. Only the core algorithms for signal processing are implemented with DSP. Thus the computation burden on DSP is reduced significantly. Compared with the traditional ones, the technique mentioned in this paper is more promising and attractive. It is extremely compact and power-efficient, which is often required by a mobile communication system. The implementation of baseband signal processing for π/4-DQPSK modem on this platform is illustrated in detail. Special emphases are laid on the architecture of the system and the algorithms used in the baseband signal processing. Finally, some experimental results are presented and the performances of the signal processing and compensation algorithms are evaluated through computer simulations.展开更多
The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and ...The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.展开更多
The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful t...The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful tools for the representation of the classical signal processing method. In this paper, we provide an overview of recent contributions to the algebraic and geometric signal processing. Specifically, the paper focuses on the mathematical structures behind the signal processing by emphasizing the algebraic and geometric structure of signal processing. The two major topics are discussed. First, the classical signal processing concepts are related to the algebraic structures, and the recent results associated with the algebraic signal processing theory are introduced. Second, the recent progress of the geometric signal and information processing representations associated with the geometric structure are discussed. From these discussions, it is concluded that the research on the algebraic and geometric structure of signal processing can help the researchers to understand the signal processing tools deeply, and also help us to find novel signal processing methods in signal processing community. Its practical applications are expected to grow significantly in years to come, given that the algebraic and geometric structure of signal processing offer many advantages over the traditional signal processing.展开更多
基金National Natural Science Foundation of China (Grant Nos. 51835009, 52105116)China Postdoctoral Science Foundation (Grant Nos. 2021M692557, 2021TQ0263)。
文摘Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159)and(NRF-2021R1A6A1A03039493)by the 2021 Yeungnam University Research Grant.
文摘The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.
基金This work was supported by King Saud University for funding this work through Researchers Supporting Project number(RSP-2021/387),King Saud University,Riyadh,Saudi Arabia。
文摘Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.
基金supported by National Natural Science Foundation of China(Grant No.61761011)Natural Science Foundation of Guangxi(Grant No.2020GXNSFBA297078).
文摘In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(NSFC,no.61701243,71771125)the Major Project of Natural Science Foundation of Jiangsu Education Department(no.19KJA180002).
文摘Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.
基金supported by the National Natural Science Foundation of China(60901056)
文摘This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.
基金National Nature Science FoundationNational Deferise Research Funds
文摘A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
基金Supported by the National Post-doctor Fundation (No. 20090451251) the Shaanxi Industry Surmount Foundation (2009K08-31) of China
文摘For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to estimate the approximative covariance matrix in the non-homogeneous condition. According to the statistical characteristics of the space-time snapshot data, via defining the aggregate snapshot data and corresponding events, the conditional probability of the space-time snapshot data which is the effective training data is given, then the weighting coefficients are obtained for the weighting method. The theory analysis indicates that the statistical methods of the Bayes and likelihood criterion for covariance matrix estimation are more reasonable than other methods that estimate the covariance matrix with the use of training data except the detected outliers. The last simulations attest that the proposed algorithms can estimate the covariance in the non-homogeneous condition exactly and have favorable characteristics.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.
文摘A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)The Project Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
文摘The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.
基金supported by the Auckland Medical Research Foundation,No.1117017(to CPU)
文摘Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.
文摘DQPSK modem has been chosen as the modem scheme in many mobile communication systems. A new signal processing technique of π/4-DQPSK modem based on software radio is discussed in this paper. Unlike many other software radio solutions to the subject, we choose a universal digital radio baseband processor operating as the co-processor of DSP. Only the core algorithms for signal processing are implemented with DSP. Thus the computation burden on DSP is reduced significantly. Compared with the traditional ones, the technique mentioned in this paper is more promising and attractive. It is extremely compact and power-efficient, which is often required by a mobile communication system. The implementation of baseband signal processing for π/4-DQPSK modem on this platform is illustrated in detail. Special emphases are laid on the architecture of the system and the algorithms used in the baseband signal processing. Finally, some experimental results are presented and the performances of the signal processing and compensation algorithms are evaluated through computer simulations.
基金Supported by National Science and Technology Support Program(2014BAD06B04-1-09)China Postdoctoral Fund(2016M601406)Heilongjiang Postdoctoral Fund(LBHZ15024)
文摘The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.
基金Sponsored by Program for Changjiang Scholars and Innovative Research Team in University ( IRT1005 )the National Natural Science Founda-tions of China ( 61171195 and 61179031)Program for New Century Excellent Talents in University ( NCET-12-0042)
文摘The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful tools for the representation of the classical signal processing method. In this paper, we provide an overview of recent contributions to the algebraic and geometric signal processing. Specifically, the paper focuses on the mathematical structures behind the signal processing by emphasizing the algebraic and geometric structure of signal processing. The two major topics are discussed. First, the classical signal processing concepts are related to the algebraic structures, and the recent results associated with the algebraic signal processing theory are introduced. Second, the recent progress of the geometric signal and information processing representations associated with the geometric structure are discussed. From these discussions, it is concluded that the research on the algebraic and geometric structure of signal processing can help the researchers to understand the signal processing tools deeply, and also help us to find novel signal processing methods in signal processing community. Its practical applications are expected to grow significantly in years to come, given that the algebraic and geometric structure of signal processing offer many advantages over the traditional signal processing.