The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns relat...The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations...TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3).展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous ...Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous phenomena of scaling and universality,whether the former behaves similarly is a long-standing controversial issue.Here we definitely demonstrate complete universal scaling in field driven FOPTs for Langevin equations in both zero and two spatial dimensions by rescaling all parameters and subtracting nonuniversal contributions with singular dimensions from an effective temperature and a special field according to an effective theory.This offers a perspective different from the usual nucleation and growth but conforming to continuous phase transitions to study FOPTs.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semicond...Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.展开更多
By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnet...By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.展开更多
This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertoo...This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertook a ter-ritorial diagnosis based on actor statements,using 28 semi-structured interviews across Occitania.This diagnosis was enriched by graphic modelling,which enabled the spatialization of the dynamics described.We show that the process of standardisation of farm buildings prevails in the majority of the territories studied.This phenomenon has intensified in recent years with the development of vast photovoltaic-roofed sheds,accentuating the farm-land conversion and soil sealing.At the same time,in areas with strong environmental,landscape and heritage contexts,a'new adventure in farm buildings'(2022 survey)is taking shape.It is primarily driven by local short food chains,which rely on self-construction,repurposing and refurbishment,the sharing of tools and equipment,and which favour the use and reuse of local resources.This study shows that farm-buildings dynamics crystallise many challenges confronting the reterritorialisation of agriculture and food production.展开更多
In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations....In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis tha...Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.展开更多
Dear Editor, Collision avoidance is critical for safe operations of multiple autonomous surface vehicles(ASVs). It is a challenging task to design collision-free control laws to ensure safety, especially in a crowded ...Dear Editor, Collision avoidance is critical for safe operations of multiple autonomous surface vehicles(ASVs). It is a challenging task to design collision-free control laws to ensure safety, especially in a crowded sea environment. This letter presents a collision-free pointto-point transition strategy for multiple ASVs subject to static obstacles, dynamic obstacles and neighboring ASVs based on control barrier functions(CBFs).展开更多
The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics app...The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detecto...We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn...What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.展开更多
基金University of the Witwatersrand Additional funding is from the DSI-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304022 and 52361035)the Fundamental Research Funds for the Central Universities.The calculations were carried out using supercomputers at the School of Physics at Ningxia University.
文摘TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3).
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous phenomena of scaling and universality,whether the former behaves similarly is a long-standing controversial issue.Here we definitely demonstrate complete universal scaling in field driven FOPTs for Langevin equations in both zero and two spatial dimensions by rescaling all parameters and subtracting nonuniversal contributions with singular dimensions from an effective temperature and a special field according to an effective theory.This offers a perspective different from the usual nucleation and growth but conforming to continuous phase transitions to study FOPTs.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (No.62074014)the Xiaomi Scholar project。
文摘Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
基金supported by the National Natural Science Foundation of China (Grant No. 11903025)the Starting Fund of China West Normal University (Grant No. 18Q062)+2 种基金the Sichuan Science and Technology Program (Grant No. 2023ZYD0023)the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038)the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833)。
文摘By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.
文摘This study's goal is to present a dynamic portrait of the farm-buildings environment in Occitania,in Southern France,in order to better identify the transitions underway in agri-food chains.To this end,we undertook a ter-ritorial diagnosis based on actor statements,using 28 semi-structured interviews across Occitania.This diagnosis was enriched by graphic modelling,which enabled the spatialization of the dynamics described.We show that the process of standardisation of farm buildings prevails in the majority of the territories studied.This phenomenon has intensified in recent years with the development of vast photovoltaic-roofed sheds,accentuating the farm-land conversion and soil sealing.At the same time,in areas with strong environmental,landscape and heritage contexts,a'new adventure in farm buildings'(2022 survey)is taking shape.It is primarily driven by local short food chains,which rely on self-construction,repurposing and refurbishment,the sharing of tools and equipment,and which favour the use and reuse of local resources.This study shows that farm-buildings dynamics crystallise many challenges confronting the reterritorialisation of agriculture and food production.
基金supported by National Natural Science Foundation of China(Nos.11805107 and 12275039)the Fundamental Research Funds in Heilongjiang Provincial Universities of China(No.145309625)。
文摘In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
文摘Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.
基金supported by the National Key R and D Program of China(2022ZD0119902)the National Natural Science Foundation of China(52271304,51979020,52071044)+4 种基金the Top-notch Young Talents Program of China(36261402)in part by the Liaoning Revitalization Talents Program(XLYC2007188)Highlevel Talents Innovation Support Program(2022RY07,2022RQ010)the Dalian Science and Technology Innovation Fund(2022JJ12 GX034)the Postdoctoral Research Foundation of China(2022M720619)。
文摘Dear Editor, Collision avoidance is critical for safe operations of multiple autonomous surface vehicles(ASVs). It is a challenging task to design collision-free control laws to ensure safety, especially in a crowded sea environment. This letter presents a collision-free pointto-point transition strategy for multiple ASVs subject to static obstacles, dynamic obstacles and neighboring ASVs based on control barrier functions(CBFs).
基金financially supported by the National Key Research and Development Program of China(No.2021YFA0718900)National Natural Science Foundation of China(Nos.62074014,52073090,and 52103284)。
文摘The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203400)the National Natural Science Foundation of China(Grant Nos.61974044 and 11974368)the Shanghai Committee of Science and Technology of China(Grant Nos.20142201000 and 21ZR1421500)。
文摘We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 and 2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.U2032214,12122414,12104487,and 12004419)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)supported by the US Department of Energy,Office of Basic Energy Sciences(Grant No.DOE-sc0012704)。
文摘What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.