The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circ...Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.展开更多
This paper investigates data processing approaches to detect and locate ground moving targets using distributed spaceborne SAR systems with long cross-track baselines. In particular, it investigates the performance of...This paper investigates data processing approaches to detect and locate ground moving targets using distributed spaceborne SAR systems with long cross-track baselines. In particular, it investigates the performance of ground moving target detection for two typical satellite formations: Cartwheel and Pendulum. An approach based on SAR images and a space-time adaptive processing (STAP) algorithm is proposed in order to overcome the effects of the ground terrain on the clutter suppression. The key idea of the approach is firstly to reduce the clutter degrees of freedom greatly by using conventional SAR imaging processing. Then the ground terrain clutter within each SAR pixel can be effectively cancelled by using the very limited spatial degrees of freedom. Finally, constant-false-alarm-rate (CFAR) techniques can be used to detect the remaining target SAR pixels after clutter cancellation. An approach to relocate the detected targets is also proposed, which is based on the estimation of the Doppler spectrum shifts of ground moving targets relative to the clutter Doppler spectrum. The proposed approaches in this paper have the advantages of simplicity and high efficiency.展开更多
An increasing number of low,medium,and high resolution SAR satellites creates a demand for a generalized sensor model to replace the rigorous sensor model(RSM).The rational polynomial coefficient(RPC)model is a generi...An increasing number of low,medium,and high resolution SAR satellites creates a demand for a generalized sensor model to replace the rigorous sensor model(RSM).The rational polynomial coefficient(RPC)model is a generic sensor model which accurately fits the object-image geometry for various sensor systems with different coefficient values.It has been widely used as an alternative to RSM for photogrammetric processing of optical images,but its applications to SAR images are rarely discussed in publications.In this paper,the feasibility and practicability of the RPC model for SAR images are studied.The RPC model can not only be used to replace the RSM(range–Doppler model for SAR),but also applied to the processing chain for SAR data,thus facilitating the processing of SAR and InSAR data for end users.展开更多
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.
基金supported in part by the National Key Research and Development Program of China(No.SQ2022YFB 3900055)in part by the National Natural Science Foundation of China(No.62101039)+1 种基金in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.
文摘This paper investigates data processing approaches to detect and locate ground moving targets using distributed spaceborne SAR systems with long cross-track baselines. In particular, it investigates the performance of ground moving target detection for two typical satellite formations: Cartwheel and Pendulum. An approach based on SAR images and a space-time adaptive processing (STAP) algorithm is proposed in order to overcome the effects of the ground terrain on the clutter suppression. The key idea of the approach is firstly to reduce the clutter degrees of freedom greatly by using conventional SAR imaging processing. Then the ground terrain clutter within each SAR pixel can be effectively cancelled by using the very limited spatial degrees of freedom. Finally, constant-false-alarm-rate (CFAR) techniques can be used to detect the remaining target SAR pixels after clutter cancellation. An approach to relocate the detected targets is also proposed, which is based on the estimation of the Doppler spectrum shifts of ground moving targets relative to the clutter Doppler spectrum. The proposed approaches in this paper have the advantages of simplicity and high efficiency.
基金Supported by National Technology Support Project(Nos.2011BAB01B01,2012BAH28B04)the National Natural Science Foundation of China(No.40930532)the National High Technology Research&Development Programme of China(No.2011AA120404).
文摘An increasing number of low,medium,and high resolution SAR satellites creates a demand for a generalized sensor model to replace the rigorous sensor model(RSM).The rational polynomial coefficient(RPC)model is a generic sensor model which accurately fits the object-image geometry for various sensor systems with different coefficient values.It has been widely used as an alternative to RSM for photogrammetric processing of optical images,but its applications to SAR images are rarely discussed in publications.In this paper,the feasibility and practicability of the RPC model for SAR images are studied.The RPC model can not only be used to replace the RSM(range–Doppler model for SAR),but also applied to the processing chain for SAR data,thus facilitating the processing of SAR and InSAR data for end users.