This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft ...Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.展开更多
In this paper,the fixed-time stability of spacecraft formation reconfiguration(position tracking)is studied.Firstly,a novel nonsingular terminal sliding mode surface is designed and based on which a fixed-time coordin...In this paper,the fixed-time stability of spacecraft formation reconfiguration(position tracking)is studied.Firstly,a novel nonsingular terminal sliding mode surface is designed and based on which a fixed-time coordinated controller is designed to keep the closed-loop system states have a finite settling time bounded by some predefined constants.Secondly,another nonsingular terminal sliding mode surface is designed by combining the artificial potential function and the aforementioned sliding surface,which meets the mutual distance constraint during transition process among spacecraft when it is bounded.Then another coordinated controller with fixed-time observer considering mutual distance constraint is presented,which guarantees the closed-loop system states stable also in bounded settling time.Finally,simulation results are shown to validate the correctness of the proposed theorems.It is worth mentioning that the control schemes also work even though there is a properly limit on the control input.展开更多
A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the ...A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.展开更多
A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point ...A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.展开更多
This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the tw...This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.展开更多
As a key technology for orbital applications, researches on spacecraft formation flying(SFF) attract more attention. However, most of existing researches about dynamics and control of SFF focus on rigid spacecrafts wi...As a key technology for orbital applications, researches on spacecraft formation flying(SFF) attract more attention. However, most of existing researches about dynamics and control of SFF focus on rigid spacecrafts without considering the effect of flexible attachments(such as flexible panels). In this paper, relative attitude dynamics and active control of SFF for a flexible spacecraft(follower spacecraft) and a rigid spacecraft(target spacecraft) are investigated. Firstly, a dynamic model of the flexible spacecraft is established by the principle of angular momentum. Then, the equation of relative attitude dynamics between the flexible spacecraft and the rigid spacecraft is derived by the quaternion to represent the attitude relation of the two spacecrafts. Finally,an attitude feedback controller is designed for the SFF system, and its stability is proved by the Lyapunov stability theory. Simulation results indicate that the panel flexibility has an obvious influence on the dynamic behaviour of the system, the designed controller can effectively control the attitude of the two spacecrafts to achieve synchronization, and the elastic vibration of the panels may be suppressed simultaneously.展开更多
This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the ...This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the circular restricted three-body problem (CRTBP) and elliptic restricted three-body problem (ERTBP) are presented. Then, with the Floquet mode method, an impulsive controller is developed to keep the Chief on the desired Halo orbit. Finally, a nonlinear adaptive control scheme based on Nonzero set- point LQR and neural network is proposed to achieve high precision formation maneuver and keeping. The simulation results indicate that the proposed nonlinear control strategy is reasonable as it considers not only the orbit keeping of the Chief, but also the formation modeling inaccuracy. Moreover, the nonlinear adaptive control scheme is effective to improve the control accuracy of the formation keeping.展开更多
This paper studies Multi-modes control method for libration points formation establishment and reconfiguration. Firstly, relations between optimal impulse control and Floquet modes are investigated. Method of generati...This paper studies Multi-modes control method for libration points formation establishment and reconfiguration. Firstly, relations between optimal impulse control and Floquet modes are investigated. Method of generating modes is proposed. Characteristics of the mode coefficients stimulated at different time are also given. Studies show that coefficients of controlled modes can be classified into four types, and formation establishment and reeonfiguration can be achieved by multi-impulse control with the presented method of generating modes. Then, since libration points formation is generally unstable, mutli-modes keeping control method which can stabilize five Floquet modes simultaneously is proposed. Finally, simulation on formation establishment and reconfiguration are carried out by using method of generating modes and mutli-modes keeping control method. Results show that the proposed control method is effective and practical.展开更多
To synchronize the attitude of a spacecraft formation flying system, three novel autonomous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated ...To synchronize the attitude of a spacecraft formation flying system, three novel autonomous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated controller, which is applied to address the case with certain models and no disturbance. The second one is a robust adaptive attitude coordinated controller, which aims to tackle the case with external disturbances and model uncertainties. The last one is a filtered robust adaptive attitude coordinated controller, which is used to overcome the case with input con- straint, model uncertainties, and external disturbances. The above three controllers do not need any external tracking signal and only require angular velocity and relative orientation between a spacecraft and its neighbors. Besides, the relative information is represented in the body frame of each spacecraft. The controllers are proved to be able to result in asymptotical stability almost everywhere. Numerical simulation results show that the proposed three approaches are effective for attitude coordination in a spacecraft formation flying system.展开更多
This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacec...This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve ex- ponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.展开更多
This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecr...This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecraft are connected virtually by spring-damper pairs. Convergence analysis is performed using the energy method. Approximate expressions for the distance errors and control accelerations at steady state are derived by using algebraic graph representations and results of graph rigidity. Analytical results indicate that if the underlying graph of the mesh is rigid, the convergence to a static shape is assured, and higher formation control precision can be achieved by increasing the elastic coefficient without increasing the control accelerations. A numerical example of spacecraft formation in low Earth orbit confirms the theoretical analysis and shows that the desired formation shape can be well achieved using the presented method, whereas the orientation of the formation can be kept pointing to the center of the Earth by the gravity gradient. The method is decentralized, and uses only relative measurement information. Constructing a distributed virtual structure in space can be the general application area. The proposed method can serve as an active shape control law for the spacecraft formations using propellantless internal forces.展开更多
In this paper,an adaptive artificial potential function(AAPF)method is developed for spacecraft formation reconfiguration with multi-obstacle avoidance under navigation and control uncertainties.Furthermore,an improve...In this paper,an adaptive artificial potential function(AAPF)method is developed for spacecraft formation reconfiguration with multi-obstacle avoidance under navigation and control uncertainties.Furthermore,an improved Linear Quadratic Regular(ILQR)is proposed to track the reference trajectory and a Lyapunov-based method is employed to demonstrate the stability of the overall closed-loop system.Compared with the traditional APF method and the equal-collision-probability surface(ECPS)method,the AAPF method not only retains the advantages of APF method and ECPS method,such as low computational complexity,simple analytical control law and easy analytical validation progress,but also proposes a new APF to solve multi-obstacle avoidance problem considering the influence of the uncertainties.Moreover,the ILQR controller obtains high control accuracy to enhance the safe performance of the spacecraft formation reconfiguration.Finally,the effectiveness of the proposed AAPF method and the ILQR controller are verified by numerical simulations.展开更多
This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law...This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law is designed to compensate the effects of flexible mode,environmental disturbance and actuator installation deviation.The basic idea of the Integral-type Sliding Mode Control(ISMC)is to design a proper sliding manifold so that the sliding mode starts from the initial time instant,and thus the robustness of the system can be guaranteed from the beginning of the process and the reaching phase is eliminated.Then,considering the nominal system of spacecraft formation based on directed topology,an attitude cooperative control strategy is developed for the nominal system with or without communication delay.The proposed control law can guarantee that for each spacecraft in the spacecraft formation,the desired attitude objective can be achieved and the attitude synchronization can be maintained with other spacecraft in the formation.Finally,simulation results are given to show the effectiveness of the proposed control algorithm.展开更多
Cooperation among multiple unmanned vehicles is an intensely challenging topic from a theoretical and practical standpoint, with far reaching indications in scientific and commercial mission scenarios. The difficulty ...Cooperation among multiple unmanned vehicles is an intensely challenging topic from a theoretical and practical standpoint, with far reaching indications in scientific and commercial mission scenarios. The difficulty of time coordination for a rapid of multirotor UAVs includes predefined spatial paths according to mission necessities. With the solution proposed, cooperative control is accomplished in the presence of time-varying communication networks, as well as stringent temporal constraints, such as concurrent arrival at the desired final locations. The proposed explanation solves the time-coordination problem under the acceptance that the trajectory-genera- tion and the path-following algorithms meeting convinced cohesion conditions are given. Communication is processed in unpredictable paths by the use of path following and directed communication graph. Dijik-Primbert algorithm for finding the shortest collision free paths is used to avoid and detect collision/congestion in unpredictable paths. Without collision detection, it doesn’t seem agreeable to have collision avoidance because there wouldn’t be everything to avoid. Dijikloyd algorithm is used for finding shortest paths in a weighted directed graph with positive and negative edges. Primloyd algorithm is used for finding shortest paths in a weighted undirected graph for conquering the complexity in matrix coding. In case of conges- tion or collision then the whole network is learned about it to all the communica- tors. Hence, communication is taken place in an unpredictable path in a secured manner.展开更多
Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). How-ever, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite...Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). How-ever, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregulari-ties for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observa-tion technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.展开更多
When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is...When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is aimed at mapping the global gravity field and its variation. Accurate baseline of GRACE satellites is necessary for the gravity field modeling. The determination of kinematic and reduced dynamic relative orbits of twin satellites has been studied in this paper, and an accuracy of 2 mm for dynamic relative orbits and 5 mm for kinematic ones can be obtained, whereby most of the double difference onboard GPS ambiguities are resolved.展开更多
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
文摘Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.
基金supported by the Major Program of Natural Science Foundation of China(No.61690210)the Science Fund for Excellent Young Scholars of Heilongjiang Province,China(No.YQ2020F007)National Natural Science Foundation of China(No.6191101340)。
文摘In this paper,the fixed-time stability of spacecraft formation reconfiguration(position tracking)is studied.Firstly,a novel nonsingular terminal sliding mode surface is designed and based on which a fixed-time coordinated controller is designed to keep the closed-loop system states have a finite settling time bounded by some predefined constants.Secondly,another nonsingular terminal sliding mode surface is designed by combining the artificial potential function and the aforementioned sliding surface,which meets the mutual distance constraint during transition process among spacecraft when it is bounded.Then another coordinated controller with fixed-time observer considering mutual distance constraint is presented,which guarantees the closed-loop system states stable also in bounded settling time.Finally,simulation results are shown to validate the correctness of the proposed theorems.It is worth mentioning that the control schemes also work even though there is a properly limit on the control input.
基金supported by the China Postdoctoral Foundation (Grant Nos. 20080440217, 200902666)
文摘A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.
基金supported by the National Natural Science Foundation of China (Grant No. 10702078)the National University of Defense Technology Research Program (Grant No. JC08-01-05)
文摘A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.
文摘This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.
基金the National Natural Science Foundation of China(Nos.11772187 and 11802174)the China Postdoctoral Science Foundation(No.2018M632104)the Research Project of Shanghai Institute of Technical Physics of the Chinese Academy of Science(No.CASIR201702)
文摘As a key technology for orbital applications, researches on spacecraft formation flying(SFF) attract more attention. However, most of existing researches about dynamics and control of SFF focus on rigid spacecrafts without considering the effect of flexible attachments(such as flexible panels). In this paper, relative attitude dynamics and active control of SFF for a flexible spacecraft(follower spacecraft) and a rigid spacecraft(target spacecraft) are investigated. Firstly, a dynamic model of the flexible spacecraft is established by the principle of angular momentum. Then, the equation of relative attitude dynamics between the flexible spacecraft and the rigid spacecraft is derived by the quaternion to represent the attitude relation of the two spacecrafts. Finally,an attitude feedback controller is designed for the SFF system, and its stability is proved by the Lyapunov stability theory. Simulation results indicate that the panel flexibility has an obvious influence on the dynamic behaviour of the system, the designed controller can effectively control the attitude of the two spacecrafts to achieve synchronization, and the elastic vibration of the panels may be suppressed simultaneously.
文摘This paper aims to provide further study on the nonlinear modeling and controller design of formation flying spacecraft in deep space missions. First, in the Sun-Earth system, the nonlinear formation dynamics for the circular restricted three-body problem (CRTBP) and elliptic restricted three-body problem (ERTBP) are presented. Then, with the Floquet mode method, an impulsive controller is developed to keep the Chief on the desired Halo orbit. Finally, a nonlinear adaptive control scheme based on Nonzero set- point LQR and neural network is proposed to achieve high precision formation maneuver and keeping. The simulation results indicate that the proposed nonlinear control strategy is reasonable as it considers not only the orbit keeping of the Chief, but also the formation modeling inaccuracy. Moreover, the nonlinear adaptive control scheme is effective to improve the control accuracy of the formation keeping.
基金supported by the National Natural Science Foundation of China(10702078)the Advance Research Program of National University of Defense Technology (JC08-01-05)
文摘This paper studies Multi-modes control method for libration points formation establishment and reconfiguration. Firstly, relations between optimal impulse control and Floquet modes are investigated. Method of generating modes is proposed. Characteristics of the mode coefficients stimulated at different time are also given. Studies show that coefficients of controlled modes can be classified into four types, and formation establishment and reeonfiguration can be achieved by multi-impulse control with the presented method of generating modes. Then, since libration points formation is generally unstable, mutli-modes keeping control method which can stabilize five Floquet modes simultaneously is proposed. Finally, simulation on formation establishment and reconfiguration are carried out by using method of generating modes and mutli-modes keeping control method. Results show that the proposed control method is effective and practical.
基金co-supported by the National Natural Science Foundation of China (No. 61174037)the Innovation Found of Chinese Academy of Space Technology (No. CAST20120602)+1 种基金the Foundation for Creative Research Groups of the National Natural Science Foundation (No. 61021002)the National High-tech Research and Development Program of China (No. 2012AA120602)
文摘To synchronize the attitude of a spacecraft formation flying system, three novel autonomous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated controller, which is applied to address the case with certain models and no disturbance. The second one is a robust adaptive attitude coordinated controller, which aims to tackle the case with external disturbances and model uncertainties. The last one is a filtered robust adaptive attitude coordinated controller, which is used to overcome the case with input con- straint, model uncertainties, and external disturbances. The above three controllers do not need any external tracking signal and only require angular velocity and relative orientation between a spacecraft and its neighbors. Besides, the relative information is represented in the body frame of each spacecraft. The controllers are proved to be able to result in asymptotical stability almost everywhere. Numerical simulation results show that the proposed three approaches are effective for attitude coordination in a spacecraft formation flying system.
基金National Natural Science Foundation of China(61174200, 61004072)Research Fund for the Doctoral Program of Higher Education of China(20102302110031)
文摘This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve ex- ponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.
基金supported by the National Natural Science Foundation of China (Nos. 61273351 and 61673390)
文摘This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecraft are connected virtually by spring-damper pairs. Convergence analysis is performed using the energy method. Approximate expressions for the distance errors and control accelerations at steady state are derived by using algebraic graph representations and results of graph rigidity. Analytical results indicate that if the underlying graph of the mesh is rigid, the convergence to a static shape is assured, and higher formation control precision can be achieved by increasing the elastic coefficient without increasing the control accelerations. A numerical example of spacecraft formation in low Earth orbit confirms the theoretical analysis and shows that the desired formation shape can be well achieved using the presented method, whereas the orientation of the formation can be kept pointing to the center of the Earth by the gravity gradient. The method is decentralized, and uses only relative measurement information. Constructing a distributed virtual structure in space can be the general application area. The proposed method can serve as an active shape control law for the spacecraft formations using propellantless internal forces.
基金The work was supported by the Major Program of National Nature Science Foundation of China(Grant Nos.61690210 and 61690213the National Science Foundation of China(Grant Nos.11725211,61503414,11302253,and 11702320)the Scientific Research Project of National University of Defense Technology(ZK16-03-20).
文摘In this paper,an adaptive artificial potential function(AAPF)method is developed for spacecraft formation reconfiguration with multi-obstacle avoidance under navigation and control uncertainties.Furthermore,an improved Linear Quadratic Regular(ILQR)is proposed to track the reference trajectory and a Lyapunov-based method is employed to demonstrate the stability of the overall closed-loop system.Compared with the traditional APF method and the equal-collision-probability surface(ECPS)method,the AAPF method not only retains the advantages of APF method and ECPS method,such as low computational complexity,simple analytical control law and easy analytical validation progress,but also proposes a new APF to solve multi-obstacle avoidance problem considering the influence of the uncertainties.Moreover,the ILQR controller obtains high control accuracy to enhance the safe performance of the spacecraft formation reconfiguration.Finally,the effectiveness of the proposed AAPF method and the ILQR controller are verified by numerical simulations.
基金supported by the National Natural Science Foundation of China(Nos.61833009,61690212 and 51875119)the National Key Research and Development Project(No.2016YFB0501203)。
文摘This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law is designed to compensate the effects of flexible mode,environmental disturbance and actuator installation deviation.The basic idea of the Integral-type Sliding Mode Control(ISMC)is to design a proper sliding manifold so that the sliding mode starts from the initial time instant,and thus the robustness of the system can be guaranteed from the beginning of the process and the reaching phase is eliminated.Then,considering the nominal system of spacecraft formation based on directed topology,an attitude cooperative control strategy is developed for the nominal system with or without communication delay.The proposed control law can guarantee that for each spacecraft in the spacecraft formation,the desired attitude objective can be achieved and the attitude synchronization can be maintained with other spacecraft in the formation.Finally,simulation results are given to show the effectiveness of the proposed control algorithm.
文摘Cooperation among multiple unmanned vehicles is an intensely challenging topic from a theoretical and practical standpoint, with far reaching indications in scientific and commercial mission scenarios. The difficulty of time coordination for a rapid of multirotor UAVs includes predefined spatial paths according to mission necessities. With the solution proposed, cooperative control is accomplished in the presence of time-varying communication networks, as well as stringent temporal constraints, such as concurrent arrival at the desired final locations. The proposed explanation solves the time-coordination problem under the acceptance that the trajectory-genera- tion and the path-following algorithms meeting convinced cohesion conditions are given. Communication is processed in unpredictable paths by the use of path following and directed communication graph. Dijik-Primbert algorithm for finding the shortest collision free paths is used to avoid and detect collision/congestion in unpredictable paths. Without collision detection, it doesn’t seem agreeable to have collision avoidance because there wouldn’t be everything to avoid. Dijikloyd algorithm is used for finding shortest paths in a weighted directed graph with positive and negative edges. Primloyd algorithm is used for finding shortest paths in a weighted undirected graph for conquering the complexity in matrix coding. In case of conges- tion or collision then the whole network is learned about it to all the communica- tors. Hence, communication is taken place in an unpredictable path in a secured manner.
基金the AFOSR(Grant No.13-0658-09)Virginia Tech.Z.Xu and M.D.Hartinger were supported by NSF-1543364(Polar Experiment Network for Geospace Upper-atmosphere Investigations-PENGUIn:Interhemispheric Investigations along the 40-degree Magnetic Meridian)1744828(Collaborative Proposal:A High-Latitude Conjugate Area Array Experiment to Investigate Solar Wind-Magnetosphere-Ionosphere Coupling).
文摘Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). How-ever, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregulari-ties for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observa-tion technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.
基金Supported by the National Natural Science Foundation of China (No. 40874004, No.40504002)the National 973 Program of China (No.2006CB701301)+1 种基金the National 863 Program of China (No. 2006AA12Z326, No. 2007AA12Z345)the 111 Project(No. B07037)
文摘When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is aimed at mapping the global gravity field and its variation. Accurate baseline of GRACE satellites is necessary for the gravity field modeling. The determination of kinematic and reduced dynamic relative orbits of twin satellites has been studied in this paper, and an accuracy of 2 mm for dynamic relative orbits and 5 mm for kinematic ones can be obtained, whereby most of the double difference onboard GPS ambiguities are resolved.