A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the a...A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.展开更多
It is known to all that distinct choices of deixis can reflect various meanings underlying the surface level. In addition to conveying a specific reference and inference, it can reflect the people's mental activit...It is known to all that distinct choices of deixis can reflect various meanings underlying the surface level. In addition to conveying a specific reference and inference, it can reflect the people's mental activities. From the perspective of psychological distance, this thesis tends to interpret the connotation underlying the the deixis chosen by those teachers in a thesis defense interview so as to help them better understand their self-identity and psychological. Besides, through this study, the students, who attend the thesis defense interview, are able to improve their capability dealing with those teachers' questions.展开更多
Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the...Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the orthogonality of deformed grid, the displacement of grid points is divided into rotational and translational parts in this paper, and inverse distance weighted interpolation is used to transfer the changing location from boundary grid to the spatial grid. Moreover, the deformation of rotational part is implemented in combination with the exponential space mapping that improves the certainty and stability of quaternion interpolation. Furthermore, the new grid deformation technique named ‘‘layering blend deformation'' is built based on the basic quaternion technique, which combines the layering arithmetic with transfinite interpolation(TFI) technique. Then the proposed technique is applied in the movement of airfoil, parametric modeling, and the deformation of complex configuration, in which the robustness of grid quality is tested. The results show that the new method has the capacity to deal with the problems with large deformation, and the ‘‘layering blend deformation'' improves the efficiency and quality of the basic quaternion deformation method significantly.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61174180,U1433125)the Jiangsu Province Science Foundation (No.BK20141413)the Chinese Postdoctoral Science Foundation (No.2014M550291)
文摘A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.
文摘It is known to all that distinct choices of deixis can reflect various meanings underlying the surface level. In addition to conveying a specific reference and inference, it can reflect the people's mental activities. From the perspective of psychological distance, this thesis tends to interpret the connotation underlying the the deixis chosen by those teachers in a thesis defense interview so as to help them better understand their self-identity and psychological. Besides, through this study, the students, who attend the thesis defense interview, are able to improve their capability dealing with those teachers' questions.
文摘Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the orthogonality of deformed grid, the displacement of grid points is divided into rotational and translational parts in this paper, and inverse distance weighted interpolation is used to transfer the changing location from boundary grid to the spatial grid. Moreover, the deformation of rotational part is implemented in combination with the exponential space mapping that improves the certainty and stability of quaternion interpolation. Furthermore, the new grid deformation technique named ‘‘layering blend deformation'' is built based on the basic quaternion technique, which combines the layering arithmetic with transfinite interpolation(TFI) technique. Then the proposed technique is applied in the movement of airfoil, parametric modeling, and the deformation of complex configuration, in which the robustness of grid quality is tested. The results show that the new method has the capacity to deal with the problems with large deformation, and the ‘‘layering blend deformation'' improves the efficiency and quality of the basic quaternion deformation method significantly.