期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target
1
作者 JIANG Libing ZHENG Shuyu +2 位作者 YANG Qingwei YANG Peng WANG Zhuang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期879-893,共15页
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos... The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method. 展开更多
关键词 three dimensional inverse synthetic aperture radar(3D ISAR)imaging space target improved orthogonal matching pursuit(OMP)algorithm scattering centers
下载PDF
A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection
2
作者 Lanyao Zhang Shichao Kan +3 位作者 Yigang Cen Xiaoling Chen Linna Zhang Yansen Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1631-1648,共18页
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ... Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods. 展开更多
关键词 Anomaly detection normalizing flow source domain feature space target domain feature space bidirectional mapping residual network
下载PDF
Research on spatial-variant property of bistatic ISAR imaging plane of space target 被引量:5
3
作者 郭宝锋 王俊岭 +2 位作者 高梅国 尚朝轩 傅雄军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期507-520,共14页
The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which c... The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter's projection position and results in migration through resolution cells, In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. 展开更多
关键词 space target bistatic ISAR imaging plane spatial-variant property
下载PDF
Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: A novel method to build the automatic recognition model of space target ISAR images 被引量:3
4
作者 Hong Yang Ya-sheng Zhang +1 位作者 Can-bin Yin Wen-zhe Ding 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1073-1095,共23页
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th... In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets. 展开更多
关键词 Space target ISAR image Neural architecture search Knowledge distillation Lightweight model
下载PDF
Test research on IR radiation characteristics control of space target using cryogenic vacuum multilayer insulation film structure 被引量:1
5
作者 卢春莲 周彦平 付森 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期119-122,共4页
In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic va... In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic vacuum multilayer insulation film structure.It can quickly lower the surface temperature of space target,approaching to the ultra-low temperature of the space environment.A vacuum simulation verification test was designed and performed.Through the analysis of test results,we can see that the surface temperature of space target covered by the structure changes with the ambient temperature,having no direct relationship with internal temperature of the target.Therefore,the designed cryogenic vacuum multilayer insulation film structure has excellent IR radiation control performance.It can reduce the target’s IR radiation intensity so as to reduce the probability of detection by IR detectors. 展开更多
关键词 IR radiation CRYOGENIC VACUUM insulation film space target
下载PDF
High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors
6
作者 马俊涛 高梅国 +3 位作者 郭宝锋 董健 熊娣 冯祺 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期459-471,共13页
The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for moni- toring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a spa... The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for moni- toring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant- and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofo- cus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method. 展开更多
关键词 space target ISAR imaging MTRC correction SPARSITY
下载PDF
A parallel pipeline connected-component labeling method for on-orbit space target monitoring
7
作者 LI Zongling ZHANG Qingjun +1 位作者 LONG Teng ZHAO Baojun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1095-1107,共13页
The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor ... The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment. 展开更多
关键词 Tianzhou-3 cargo spacecraft(TZ-3) connected-component labeling(CCL)algorithms parallel pipeline processing on-orbit space target detection streaming processor
下载PDF
A High Speed Detection Scheme for Point Targets in a Multitarget Environment
8
作者 Song Liuping and Sun ZhongkangDept. of Electronic Eng., National Univ. of Defense Technology, Changsha 410073, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第2期109-123,共15页
The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line ... The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system. 展开更多
关键词 Point target Three-dimensional space(3-D space) Iterative algorithm Objective function Convergency.
下载PDF
Analytic optimal pose tracking control in close-range proximity operations with a non-cooperative target
9
作者 Caisheng WEI Guanhua HUANG +1 位作者 Zeyang YIN Qifeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期410-425,共16页
This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow... This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme. 展开更多
关键词 Optimal control Close-range proximity operation Non-cooperative space target Coupled attitude and orbit control Iterative sequential action control
原文传递
Bayesian track-before-detect algorithm for nonstationary sea clutter
10
作者 XU Cong HE Zishu +1 位作者 LIU Haicheng LI Yadan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1338-1344,共7页
Radar detection of small targets in sea clutter is a particularly demanding task because of the nonstationary characteristic of sea clutter.The track-before-detect(TBD)filter is an effective way to increase the signal... Radar detection of small targets in sea clutter is a particularly demanding task because of the nonstationary characteristic of sea clutter.The track-before-detect(TBD)filter is an effective way to increase the signal-to-clutter ratio(SCR),thus improving the detection performance of small targets in sea clutter.To cope with the nonstationary characteristic of sea clutter,an easily-implemented Bayesian TBD filter with adaptive detection threshold is proposed and a new parameter estimation method is devised which is integrated into the detection process.The detection threshold is set according to the parameter estimation result under the framework of information theory.For detection of closely spaced targets,those within the same range cell as the one under test are treated as contribution to sea clutter,and a successive elimination method is adopted to detect them.Simulation results prove the effectiveness of the proposed algorithm in detecting small targets in nonstationary sea clutter,especially closely spaced ones. 展开更多
关键词 small target track-before-detect(TBD) nonstationary sea clutter closely spaced target
下载PDF
Quadratic Programming-based Approach for Autonomous Vehicle Path Planning in Space
11
作者 CHEN Yang HAN Jianda WU Huaiyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期665-673,共9页
Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environm... Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space. 展开更多
关键词 path planning in three-dimensional space obstacle avoidance target pursuit relative velocity coordinates quadratic programming
下载PDF
A grasp planning algorithm under uneven contact point distribution scenario for space non-cooperative target capture
12
作者 Bicheng CAI Chengfei YUE +2 位作者 Fan WU Xueqin CHEN Yunhai GENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期452-464,共13页
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ... The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms. 展开更多
关键词 Grasp planning Line array modeling Space debris removal Space non-cooperative target capture Virtual symmetrical contact point method
原文传递
Potential Synergistic and Multitarget Effect of Herbal Pair Chuanxiong Rhizome-Paeonia Albifora Pall on Osteoarthritis Disease:A Computational Pharmacology Approach 被引量:6
13
作者 叶蕻芝 郑春松 +2 位作者 徐筱杰 吴明霞 刘献祥 《Chinese Journal of Integrative Medicine》 SCIE CAS 2011年第9期698-703,共6页
Objective:To study the polypharmacological mechanism of herbal pair Chuanxiong Rhizome-Paeonia Albifora Pall(HP CXR-PAP) on the treatment for osteoarthritis(OA).Methods:Chemical space was used to discuss the sim... Objective:To study the polypharmacological mechanism of herbal pair Chuanxiong Rhizome-Paeonia Albifora Pall(HP CXR-PAP) on the treatment for osteoarthritis(OA).Methods:Chemical space was used to discuss the similarities and differences between the molecule sets of HP CXR-PAP and drugs.Docking protocol was used to study the interaction between HP CXR-PAP and OA target enzymes.The similarities and differences of HP CXR-PAP and drugs in target spaces were elucidated by network features.Results:The plots between the molecule sets of HP CXR-PAP and drugs in chemical space had the majority in the same region, and compounds from HP CXR-PAP covered a much larger additional region of space than drug molecules, which denoted the diverse structural properties in the molecule set of HP CXR-PAP.The molecules in HP CXR-PAP had the properties of promiscuous drugs and combination drug,and both HP CXR-PAP ligand-target interaction network and drug ligand-target interaction network were similar in the interaction profiles and network features,which revealed the effects of multicomponent and multitarget.Conclusion:The clue of potential synergism was obtained in curing OA disease by Chinese medicine,which revealed the advantages of Chinese medicine for targeting osteoarthritis disease. 展开更多
关键词 herbal pair Chuanxiong Rhizome-Paeonia Albifora Pall chemical space virtual screening target space computational pharmacology OSTEOARTHRITIS
原文传递
Coordinated target localization base on pseudo measurement for clustered space robot 被引量:5
14
作者 Zhai Guang Zhang Jingrui Zhou Zhicheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1524-1533,共10页
This paper presents a coordinated target localization method for clustered space robot.According to the different measuring capabilities of cluster members,the master-slave coordinated relative navigation strategy for... This paper presents a coordinated target localization method for clustered space robot.According to the different measuring capabilities of cluster members,the master-slave coordinated relative navigation strategy for target localization with respect to slavery space robots is proposed;then the basic mathematical models,including coordinated relative measurement model and cluster centralized dynamics,are established respectively.By employing the linear Kalman flter theorem,the centralized estimator based on truth measurements is developed and analyzed frstly,and with an intention to inhabit the initial uncertainties related to target localization,the globally stabilized estimator is designed through introduction of pseudo measurements.Furthermore,the observability and controllability of stochastic system are also analyzed to qualitatively evaluate the convergence performance of pseudo measurement estimator.Finally,on-orbit target approaching scenario is simulated by using semi-physical simulation system,which is used to verify the convergence performance of proposed estimator.During the simulation,both the known and unknown maneuvering acceleration cases are considered to demonstrate the robustness of coordinated localization strategy. 展开更多
关键词 Clustered space robot Coordinated target localization On-orbit servicing Pseudo measurements
原文传递
Space moving target detection using time domain feature
15
作者 王敏 陈金勇 +1 位作者 高峰 赵金宇 《Optoelectronics Letters》 EI 2018年第1期67-70,共4页
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space ... The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects(target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10^(-5), which outperforms those of compared algorithms. 展开更多
关键词 AS Space moving target detection using time domain feature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部