期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Method for the Configuration Design of a Space Truss Deployable Mechanism and Its Application 被引量:1
1
作者 LI Bo 《International Journal of Plant Engineering and Management》 2010年第4期236-241,共6页
A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency m... A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer. 展开更多
关键词 space truss deployable mechanism metamorphic mechanism configuration change topology analysis
下载PDF
Space truss construction modeling based on on-orbit assembly motion feature
2
作者 Changjie ZHAO Weizhong GUO +3 位作者 Meng CHEN Jiaxing HU Youcheng HAN Rongfu LIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期365-379,共15页
More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-... More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-scale space infrastructure construction,it is necessary to study space truss automation design and robotic construction.This paper proposes an ordinal finite screw adjacency matrix model(OFSAMM),focusing on the relationship between assembly motions,to express and compute a space truss structure.In this model,a space truss is abstracted as a set of ordered assembly motions,each of which is recorded as a finite screw as the basic element of the truss and its assembly.The operation of truss transformation is also derived under this model.Therefore,the truss configuration,the assembly sequence,the truss sub-assembly,the truss components,and the on-orbit assembly task can be expressed and calculated in a unified model,which is calculated and stores the truss topology and assembly with the minimum storage cost.At the end of this paper,we introduce how to synthesize and optimize space truss design through two cases.The study will help to improve design efficiency.Furthermore,it provides a theoretical basis for the automatic construction of space truss structures,especially in the next stage. 展开更多
关键词 Adjacency matrix Finite screw On-orbit construction modeling Space applications Space trusses Topology design
原文传递
Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode 被引量:2
3
作者 Su-deok SHON Seung-jae LEE Kang-guk LEE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第3期206-218,共13页
This study investigated characteristics of bifurcation and critical buckling load by shape imperfection of space truss,which were sensitive to initial conditions.The critical point and buckling load were computed by t... This study investigated characteristics of bifurcation and critical buckling load by shape imperfection of space truss,which were sensitive to initial conditions.The critical point and buckling load were computed by the analysis of the eigenvalues and determinants of the tangential stiffness matrix.The two-free-nodes example and star dome were selected for the case study in order to examine the nodal buckling and global buckling by the sensitivity to the eigen buckling mode and the analyses of the influence,and characteristics of the parameters as defined by the load ratio of the center node and surrounding node,as well as rise-span ratio were performed.The sensitivity to the imperfection of the initial shape of the two-free-nodes example,which occurs due to snapping at the critical point,resulted in bifurcation before the limit point due to the buckling mode,and the buckling load was reduced by the increase in the amount of imperfection.The two sensitive buckling patterns of the numerical model are established by investigating the displaced position of the free nodes,and the asymmetric eigenmode greatly influenced the behavior of the imperfection shape whether it was at limit point or bifurcation.Furthermore,the sensitive mode of the two-free-nodes example was similar to the in-extensional basis mechanism of a simplified model.The star dome,which was used to examine the influence among several nodes,indicated that the influence of nodal buckling was greater than that of global buckling as the rise-span ratio was higher.Besides,global buckling is occurred with reaching bifurcation point as the value of load ratio was higher,and the buckling load level was about 50%-70% of load level at limit point. 展开更多
关键词 Space truss Geometric nonlinearity Initial imperfection SNAP-THROUGH BIFURCATION Global buckling
原文传递
Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section 被引量:1
4
作者 Senping WANG Xiaolong LIU +2 位作者 Bo YUAN Minjie SHI Yanhui WEI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第9期1141-1152,共12页
The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of s... The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper.Firstly,the flexural stiffness and torsional stiffness of space truss arches are deduced.The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch.However,since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio,the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified.Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy.Secondly,the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio.By assuming that all components of space truss circular arches bear only axial force,the design formulas to prevent the local buckling of chord and transverse tubes are deduced.Finally,the bearing capacity design equations of space truss arches are proposed under vertical uniform load. 展开更多
关键词 torsional stiffness strength design elastic buckling space truss arches OUT-OF-PLANE
原文传递
Mechanical performance analysis and stiffness test of a new type of suspension bridge 被引量:1
5
作者 Xia QIN Mingzhe LIANG +1 位作者 Xiaoli XIE Huilan SONG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第5期1160-1180,共21页
A new type of suspension bridge is proposed based on the gravity stiffness principle.Compared with a conventional suspension bridge,the proposed bridge adds rigid webs and cross braces.The rigid webs connect the main ... A new type of suspension bridge is proposed based on the gravity stiffness principle.Compared with a conventional suspension bridge,the proposed bridge adds rigid webs and cross braces.The rigid webs connect the main cable and main girder to form a truss that can improve the bending stiffness of the bridge.The cross braces connect the main cables to form a closed space truss structure that can improve the torsional stiffness of the bridge.The rigid webs and cross braces are installed after the construction of a conventional suspension bridge is completed to resist different loads with different structural forms.A new type of railway suspension bridge with a span of 340 m and a highway suspension bridge with a span of 1020 m were designed and analysed using the finite element method.The stress,deflection of the girders,unbalanced forces of the main towers,and natural frequencies were compared with those of conventional suspension bridges.A stiffness test was carried out on the new type of suspension bridge with a small span,and the results were compared with those for a conventional bridge.The results showed that the new suspension bridge had a better performance than the conventional suspension bridge. 展开更多
关键词 new type of suspension bridge stiffness test mechanical performance railway bridge space truss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部