In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one...In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.展开更多
YB/T 4195-2009 1 Scope This standard specifies the term and definition,classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of ...YB/T 4195-2009 1 Scope This standard specifies the term and definition,classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of spalling resistance fast-drying refractory castables.This standard is applicable to spalling resistance fast-drying refractory castables for steel rolling heating furnace and industrial furnace of other industries.2 Normative References展开更多
The spall tests under the plane tensile pulses for resistance spot weld (RSW) of QP980 steel are performed by using a gun system. The velocity histories of free surfaces of the RSWare measured with the laser velocit...The spall tests under the plane tensile pulses for resistance spot weld (RSW) of QP980 steel are performed by using a gun system. The velocity histories of free surfaces of the RSWare measured with the laser velocity interferometer system for any reflector. The recovered specimens are investigated with an Olympus GX71 metallographic microscope and a scanning electron microscope (SEM). The measured velocity histories are explained and used to evaluate the tension stresses in the RSW applying the characteristic theory and the assumption of Gathers. The spall strength (1977 2784MPa) of the RSW for 0,P980 steel is determined based on the measured and simulated velocity histories. The spall mechanism of the RSW is brittle fracture in view of the SEM investigation of the recovered specimen. The micrographs of the as-received QP980 steel, the initial and recovered RSW of this steel for the spall test are compared to reveal the microstructure evolution during the welding and spall process. It is indicated that during the welding thermal cycle, the local martensitic phase transformation is dependent on the location within the fusion zone and the heat affected zone. It is presented that the transformation at high strain rate may be cancelled by other phenomenon while the evolution of weld defects is obvious during the spall process. It may be the stress triaxiality and strain rate effect of the RSW strength or the dynamic load-carrying capacity of the RSW structure that the spall strength of the RSW for QP980 steel is much higher than the uniaxial compression yield strength (1200 MPa) of the rnartensite phase in 0,P980 steel. Due to the weld defects in the center of the I^SW, the spall strength of the RSW should be less than the conventional spall strength or the dynamic load-carrying capacity of condensed structure.展开更多
1 Scope This standard specifies the term, definition, classification, labeling, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of spalling re...1 Scope This standard specifies the term, definition, classification, labeling, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of spalling resistant bauxite based bricks for cement kiln.展开更多
The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxi...The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxidation and spalling tests. The results showed that RE had significant effects on the void band in the diffusion layer and the properties of aluminized steel. After diffusion treatment, a considerable number of the voids between the middle layer and transitional layer of pure aluminized coating, aggregated into wavy-line-shaped void bands parallel to the outer surface. For the RE added aluminized coating, only a few voids aggregated into intermittent block shapes. During high temperature oxidation at 800 ℃ for 200 h, the wavy void band of pure aluminized coating aggregated further into a linear crack parallel to the outer surface, and the internal oxidation occurred within them; the open cracks perpendicular to the surface penetrated through the diffusion layer. For the RE added aluminized coating, only a few voids aggregated into intermittent meniscus shapes. During cyclic spalling tests, the peeling, spallation, and pulver ulent cracking occurred along the void band in the diffusion layer of pure aluminized coating, but only a little spallation occurred in the diffusion layer of the RE-added aluminized coating, in which cracks perpendicular to the surface were much smaller than those of pure aluminized coating and did not penetrate through the diffusion layer. It is evident that RE addition can restrain the formation and aggregation of voids and subsequently improve the resistances to oxidation and spalling. The mechanism of the RE effect on the void band in the diffusion layer is also discussed.展开更多
Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within co...Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within concrete,they play an active role in improving spalling resistance of concrete when exposed to elevated temperature while having no adverse effect on its mechanical properties.Therefore,there is a necessity to quantify the effect of the addition of polypropylene fibers in terms of the fiber dosage,the strength of the concrete,and the residual mechanical properties of fiber-reinforced concrete under exposure to high temperature from fire.The study was carried out on three water/cement(w/c)ratios(0.47,0.36&0.20)using granite aggregate for determining short term mechanical properties of Polypropylene fiber reinforced concrete in comparison to control mix.The experimental program includes 100×200 mm&150 x 300 mm cylinders with fiber volume of 0.5%,that were subjected to temperatures exposures of 400°C and 600°C for durations of 1 hour.From the results,it was observed that no significant enhancement in mechanical properties such as modulus of elasticity,Poisson’s ratio,split tensile strength,flexural strength,and compressive strength was observed at room temperature and at elevated temperatures.展开更多
基金supported by the Scheme of Science and Technology of Guangdong Province,China(2005B32801002)
文摘In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.
文摘YB/T 4195-2009 1 Scope This standard specifies the term and definition,classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of spalling resistance fast-drying refractory castables.This standard is applicable to spalling resistance fast-drying refractory castables for steel rolling heating furnace and industrial furnace of other industries.2 Normative References
基金Supported by the National Natural Science Foundation of China under Grant Nos 11372149,11572164 and 11502074the K.C.Wong Magna Fund in Ningbo University
文摘The spall tests under the plane tensile pulses for resistance spot weld (RSW) of QP980 steel are performed by using a gun system. The velocity histories of free surfaces of the RSWare measured with the laser velocity interferometer system for any reflector. The recovered specimens are investigated with an Olympus GX71 metallographic microscope and a scanning electron microscope (SEM). The measured velocity histories are explained and used to evaluate the tension stresses in the RSW applying the characteristic theory and the assumption of Gathers. The spall strength (1977 2784MPa) of the RSW for 0,P980 steel is determined based on the measured and simulated velocity histories. The spall mechanism of the RSW is brittle fracture in view of the SEM investigation of the recovered specimen. The micrographs of the as-received QP980 steel, the initial and recovered RSW of this steel for the spall test are compared to reveal the microstructure evolution during the welding and spall process. It is indicated that during the welding thermal cycle, the local martensitic phase transformation is dependent on the location within the fusion zone and the heat affected zone. It is presented that the transformation at high strain rate may be cancelled by other phenomenon while the evolution of weld defects is obvious during the spall process. It may be the stress triaxiality and strain rate effect of the RSW strength or the dynamic load-carrying capacity of the RSW structure that the spall strength of the RSW for QP980 steel is much higher than the uniaxial compression yield strength (1200 MPa) of the rnartensite phase in 0,P980 steel. Due to the weld defects in the center of the I^SW, the spall strength of the RSW should be less than the conventional spall strength or the dynamic load-carrying capacity of condensed structure.
文摘1 Scope This standard specifies the term, definition, classification, labeling, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of spalling resistant bauxite based bricks for cement kiln.
基金Item Sponsored by Key Science and Technology Plan Foundation of Henan of China (0423023500) and Natural ScienceFoundation of Henan Province (0511021600)
文摘The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxidation and spalling tests. The results showed that RE had significant effects on the void band in the diffusion layer and the properties of aluminized steel. After diffusion treatment, a considerable number of the voids between the middle layer and transitional layer of pure aluminized coating, aggregated into wavy-line-shaped void bands parallel to the outer surface. For the RE added aluminized coating, only a few voids aggregated into intermittent block shapes. During high temperature oxidation at 800 ℃ for 200 h, the wavy void band of pure aluminized coating aggregated further into a linear crack parallel to the outer surface, and the internal oxidation occurred within them; the open cracks perpendicular to the surface penetrated through the diffusion layer. For the RE added aluminized coating, only a few voids aggregated into intermittent meniscus shapes. During cyclic spalling tests, the peeling, spallation, and pulver ulent cracking occurred along the void band in the diffusion layer of pure aluminized coating, but only a little spallation occurred in the diffusion layer of the RE-added aluminized coating, in which cracks perpendicular to the surface were much smaller than those of pure aluminized coating and did not penetrate through the diffusion layer. It is evident that RE addition can restrain the formation and aggregation of voids and subsequently improve the resistances to oxidation and spalling. The mechanism of the RE effect on the void band in the diffusion layer is also discussed.
文摘Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within concrete,they play an active role in improving spalling resistance of concrete when exposed to elevated temperature while having no adverse effect on its mechanical properties.Therefore,there is a necessity to quantify the effect of the addition of polypropylene fibers in terms of the fiber dosage,the strength of the concrete,and the residual mechanical properties of fiber-reinforced concrete under exposure to high temperature from fire.The study was carried out on three water/cement(w/c)ratios(0.47,0.36&0.20)using granite aggregate for determining short term mechanical properties of Polypropylene fiber reinforced concrete in comparison to control mix.The experimental program includes 100×200 mm&150 x 300 mm cylinders with fiber volume of 0.5%,that were subjected to temperatures exposures of 400°C and 600°C for durations of 1 hour.From the results,it was observed that no significant enhancement in mechanical properties such as modulus of elasticity,Poisson’s ratio,split tensile strength,flexural strength,and compressive strength was observed at room temperature and at elevated temperatures.