期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
Joint Multi-Domain Channel Estimation Based on Sparse Bayesian Learning for OTFS System 被引量:7
1
作者 Yong Liao Xue Li 《China Communications》 SCIE CSCD 2023年第1期14-23,共10页
Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next gene... Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm. 展开更多
关键词 OTFS sparse bayesian learning basis expansion model channel estimation
下载PDF
Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning 被引量:3
2
作者 Shuo Zheng Yu-Xin Zhu +3 位作者 Dian-Qing Li Zi-Jun Cao Qin-Xuan Deng Kok-Kwang Phoon 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期425-439,共15页
Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse mult... Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse multivariate data obtained from geotechnical site investigation,it is impossible to identify outliers with certainty due to the distortion of statistics of geotechnical parameters caused by outliers and their associated statistical uncertainty resulted from data sparsity.This paper develops a probabilistic outlier detection method for sparse multivariate data obtained from geotechnical site investigation.The proposed approach quantifies the outlying probability of each data instance based on Mahalanobis distance and determines outliers as those data instances with outlying probabilities greater than 0.5.It tackles the distortion issue of statistics estimated from the dataset with outliers by a re-sampling technique and accounts,rationally,for the statistical uncertainty by Bayesian machine learning.Moreover,the proposed approach also suggests an exclusive method to determine outlying components of each outlier.The proposed approach is illustrated and verified using simulated and real-life dataset.It showed that the proposed approach properly identifies outliers among sparse multivariate data and their corresponding outlying components in a probabilistic manner.It can significantly reduce the masking effect(i.e.,missing some actual outliers due to the distortion of statistics by the outliers and statistical uncertainty).It also found that outliers among sparse multivariate data instances affect significantly the construction of multivariate distribution of geotechnical parameters for uncertainty quantification.This emphasizes the necessity of data cleaning process(e.g.,outlier detection)for uncertainty quantification based on geoscience data. 展开更多
关键词 Outlier detection Site investigation sparse multivariate data Mahalanobis distance Resampling by half-means bayesian machine learning
下载PDF
Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior 被引量:2
3
作者 Chengyao Ruan Zaichen Zhang +3 位作者 Hao Jiang Jian Dang Liang Wu Hongming Zhang 《China Communications》 SCIE CSCD 2023年第5期57-69,共13页
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ... Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices. 展开更多
关键词 sparse bayesian learning approximate message passing compressed sensing expectation propagation
下载PDF
DOA estimation based on multi-frequency joint sparse Bayesian learning for passive radar 被引量:1
4
作者 WEN Jinfang YI Jianxin +2 位作者 WAN Xianrong GONG Ziping SHEN Ji 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1052-1063,共12页
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ... This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar. 展开更多
关键词 multi-frequency passive radar DOA estimation sparse bayesian learning small snapshot low signal-to-noise ratio(SNR)
下载PDF
Sparse Bayesian learning in ISAR tomography imaging
5
作者 苏伍各 王宏强 +2 位作者 邓彬 王瑞君 秦玉亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1790-1800,共11页
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a... Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms. 展开更多
关键词 inverse synthetic aperture radar (ISAR) TOMOGRAPHY computer aided tomography (CT) imaging sparse recover compress sensing (CS) sparse bayesian leaming (sbl
下载PDF
EARLY CATARACT DETECTION BY DYNAMIC LIGHT SCATTERING WITH SPARSE BAYESIAN LEARNING
6
作者 SU-LONG NYEO RAFAT R.ANSAR 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第3期303-313,共11页
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco... Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies. 展开更多
关键词 CATARACT dynamic light scattering diagnostic algorithm sparse bayesian learning(sbl).
下载PDF
Learning Bayesian networks by constrained Bayesian estimation 被引量:3
7
作者 GAO Xiaoguang YANG Yu GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期511-524,共14页
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil... Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy. 展开更多
关键词 bayesian networks (BNs) PARAMETER learning CONSTRAINTS sparse data
下载PDF
OTFS系统SBL-Turbo压缩感知信道估计算法
8
作者 张华卫 刘佳 +2 位作者 蒋占军 李翠然 唐喜娟 《信号处理》 CSCD 北大核心 2024年第6期1074-1081,共8页
针对正交时频空调制(OTFS)系统由多普勒频移引起的信道估计准确度下降的问题,本文提出了一种联合无线信道在时延-多普勒域稀疏特性的SBL-Turbo压缩感知信道估计算法。首先,对时延-多普勒域稀疏信道建模,使其服从以噪声功率为条件的高斯... 针对正交时频空调制(OTFS)系统由多普勒频移引起的信道估计准确度下降的问题,本文提出了一种联合无线信道在时延-多普勒域稀疏特性的SBL-Turbo压缩感知信道估计算法。首先,对时延-多普勒域稀疏信道建模,使其服从以噪声功率为条件的高斯先验分布,利用稀疏贝叶斯学习模块估计得到稀疏信道的均值与方差,并结合期望最大化算法更新高斯先验模型中的参数。其次,引入了LMMSE(线性最小均方误差)估计器模块,该模块对稀疏信道的后验分布进行再估计,提高估计的准确度。通过对每个模块估计得到的信道后验分布进行数据处理,使得模块的输入值与输出值解耦,进而减少模块间的错误传播。最后,两个模块采用Turbo结构迭代估计信道的后验分布,得到信道状态信息。实验结果表明,相较于其他估计方法,该算法能够显著提高信道估计的精度,并且改善系统的误码率性能,能够有效地解决OTFS系统中由多普勒频移引起的信道估计问题。 展开更多
关键词 正交时频空调制 信道估计 压缩感知 稀疏贝叶斯学习
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
9
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse bayesian learning fast bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
Online identification of time-varying dynamical systems for industrial robots based on sparse Bayesian learning 被引量:5
10
作者 SHEN Tan DONG YunLong +1 位作者 HE DingXin YUAN Ye 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期386-395,共10页
Nowadays, industrial robots have been widely used in manufacturing, healthcare, packaging, and more. Choosing robots in these applications mainly attributes to their repeatability and precision. However, prolonged and... Nowadays, industrial robots have been widely used in manufacturing, healthcare, packaging, and more. Choosing robots in these applications mainly attributes to their repeatability and precision. However, prolonged and loaded operations can deteriorate the accuracy and efficiency of industrial robots due to the unavoidable accumulated kinematical and dynamical errors. This paper resolves these aforementioned issues by proposing an online time-varying sparse Bayesian learning(SBL) method to identify dynamical systems of robots in real-time. The identification of dynamical systems for industrial robots is cast as a sparse linear regression problem. By constructing the dictionary matrix, the parameters of the robot dynamics are effectively estimated via a re-weighted1-minimization algorithm. Online recursive methods are integrated into SBL to achieve real-time system identification. By including sparsity and promoting online learning, the proposed method can handle time-varying dynamical systems and therefore improve operational stability and accuracy. Experimental results on both simulated and real selective compliance assembly robot arm(SCARA) robots have demonstrated the effectiveness of the proposed method for industrial robots. 展开更多
关键词 industrial robots sparse bayesian learning online identification
原文传递
On fast estimation of direction of arrival for underwater acoustic target based on sparse Bayesian learning 被引量:9
11
作者 WANG Biao ZHU Zhihui DAI Yuewei 《Chinese Journal of Acoustics》 CSCD 2017年第1期102-112,共11页
The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing s... The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing speed. To solve this problem, a fast underwater acoustic target direction of arrival estimation was proposed. Analyzing the model characteristics of block-sparse Bayesian learning framework for DOA estimation, an algorithm was proposed to obtain the value of core hyper-parameter through MacKay's fixed-point method to estimate the DOA. By this process, it will spend less time for computation and provide more superior recovery performance than TMSBL algorithm. Simulation results verified the feasibility and effectiveness of the proposed algorithm. 展开更多
关键词 On fast estimation of direction of arrival for underwater acoustic target based on sparse bayesian learning DOA
原文传递
DOA Estimation Based on Root Sparse Bayesian Learning Under Gain and Phase Error 被引量:1
12
作者 Dingke Yu Xin Wang +4 位作者 Wenwei Fang Zixian Ma Bing Lan Chunyi Song Zhiwei Xu 《Journal of Communications and Information Networks》 EI CSCD 2022年第2期202-213,共12页
The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this pa... The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this paper,a new root sparse Bayesian learning based DOA estimation method robust to gain-phase error is proposed,which dynamically adjusts the grid angle under coarse grid spacing to compensate the off-grid error and applies the expectation maximization(EM)method to solve the respective iterative formula-based on the prior distribution of each parameter.Simulation results verify that the proposed method reduces the computational complexity through coarse grid sampling while maintaining a reasonable accuracy under gain and phase errors,as compared to the existing methods. 展开更多
关键词 direction of arrival estimation gain-phase error root sparse bayesian learning off-grid error
原文传递
基于BSBL-BO算法的DME脉冲干扰抑制方法 被引量:5
13
作者 李冬霞 陈秋雨 +1 位作者 王磊 刘海涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2649-2656,共8页
针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块... 针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块稀疏贝叶斯学习边界优化(block sparsEbayesian learning-thEbound optimization,BSBL-BO)算法的DME脉冲干扰抑制方法。首先,利用OFDM接收机空子载波不传输有用信号的特点构造针对DME脉冲干扰信号的压缩感知模型;然后基于BSBL-BO算法重构DME脉冲干扰信号;最后在时域进行干扰消除。仿真结果表明,该方法比已有的脉冲干扰抑制方法具有更高的重构精度和更快的运算速度,进一步降低了OFDM接收机的误比特率,提高了L-DACS1系统前向链路传输性能。 展开更多
关键词 L频段数字航空通信系统1型 测距仪干扰 贝叶斯压缩感知 块稀疏贝叶斯学习
下载PDF
基于EBSBL-BO算法的L-DACS系统干扰抑制方法 被引量:3
14
作者 李冬霞 王雪 +1 位作者 刘海涛 王磊 《信号处理》 CSCD 北大核心 2022年第10期2192-2200,共9页
L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)是未来面向航路阶段的空地数据链路,其工作频段部署在两个测距仪(distance measure equipment,DME)工作频段之间,为了消除测距仪产生的高功率脉冲信号对L-D... L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)是未来面向航路阶段的空地数据链路,其工作频段部署在两个测距仪(distance measure equipment,DME)工作频段之间,为了消除测距仪产生的高功率脉冲信号对L-DACS系统前向链路正交频分复用接收机的干扰,本文提出基于扩展稀疏贝叶斯-边界优化(extended block sparse Bayesian learning-boundary optimization,EBSBL-BO)算法的高功率DME脉冲干扰抑制方法。首先,利用L-DACS系统正交频分复用接收机的空子载波建立DME干扰信号压缩感知模型;然后,基于EBSBL-BO算法对DME信号进行重构;最后将高功率DME脉冲信号在时域消除。仿真结果显示:本文算法与其他稀疏贝叶斯重构算法相比,本文算法DME脉冲信号重构精度更高,正交频分复用接收机误码率更低,可有效改善L-DACS系统正交频分复用接收性能。 展开更多
关键词 L频段数字航空通信系统 块稀疏贝叶斯 测距仪
下载PDF
一种联合SBL和DTW的叠前道集剩余时差校正方法 被引量:1
15
作者 石战战 夏艳晴 +1 位作者 周怀来 王元君 《岩性油气藏》 CSCD 北大核心 2019年第3期86-94,共9页
基于动态时间规整的叠前道集剩余时差校正方法存在动态时间规整算法对噪声敏感,准确计算规整路径困难;算法采用逐点搬家法,直接对地震道作剩余时差校正容易引起地震波形畸变的问题。提出一种联合稀疏贝叶斯学习(Sparse Bayesian Learnin... 基于动态时间规整的叠前道集剩余时差校正方法存在动态时间规整算法对噪声敏感,准确计算规整路径困难;算法采用逐点搬家法,直接对地震道作剩余时差校正容易引起地震波形畸变的问题。提出一种联合稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)和动态时间规整(Dynamic Time Warping,DTW)的叠前道集剩余时差校正方法,采用SBL对地震道集进行稀疏表示,再利用DTW对稀疏表示结果进行剩余时差校正,处理后重构地震记录。结果表明,SBL具有良好的噪声鲁棒性,较少的局部最小值,以及全局最优解同时也是最稀疏解,稀疏分解后得到地下地层单位冲击响应,消除了子波影响,再进行时差校正就能避免波形畸变,同时实现了高保真剩余时差校正和随机噪声压制。数值模拟和实际资料处理结果表明该方法具有良好的应用效果。 展开更多
关键词 叠前道集 剩余时差 稀疏表示 稀疏贝叶斯学习 动态时间规整
下载PDF
基于广义模式耦合稀疏Bayesian学习的1-Bit压缩感知
16
作者 司菁菁 韩亚男 +1 位作者 张磊 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2700-2707,共8页
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提... 在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。 展开更多
关键词 1-Bit压缩感知 广义稀疏bayesian学习 模式耦合 自适应阈值
下载PDF
基于SBL-WVD的地震高分辨率时频分析 被引量:10
17
作者 纪永祯 张渝悦 +1 位作者 朱立华 李博 《石油物探》 EI CSCD 北大核心 2020年第1期80-86,107,共8页
时频分析是地震数据处理和解释过程中重要的数学工具,其精度和分辨率决定了后续处理和解释成果的质量。提出了一种结合贝叶斯学习方法(sparse bayesian learning,SBL)和魏格纳威利分布(wigner-ville distribution,WVD)的两步高分辨率时... 时频分析是地震数据处理和解释过程中重要的数学工具,其精度和分辨率决定了后续处理和解释成果的质量。提出了一种结合贝叶斯学习方法(sparse bayesian learning,SBL)和魏格纳威利分布(wigner-ville distribution,WVD)的两步高分辨率时频分析方法。第一步基于构建的雷克子波库和贝叶斯学习方法将地震数据分解为子波的线性组合;第二步通过求取子波的魏格纳威利分布获得地震数据的时频分布。其中,贝叶斯最大后验概率和第二型最大似然概率通过迭代求解。贝叶斯学习方法可以用最少数量的、具有不同主频和相位的雷克子波重构地震数据,并同时有效压制随机噪声。求取、分解子波的魏格纳威利分布可有效避免交叉项干扰,分辨率高。模拟数据和实际数据实验结果均验证了方法的正确性和有效性。与常规基于Gabor变换和匹配追踪算法的时频分析方法相比,该方法具有更高的精度和分辨率,有利于后续处理和解释研究。 展开更多
关键词 时频分析 高分辨率 贝叶斯学习 魏格纳威利分布 雷克子波库 交叉项干扰
下载PDF
基于快速SBL的双基地ISAR成像 被引量:6
18
作者 朱晓秀 胡文华 +1 位作者 郭宝锋 郭城 《雷达科学与技术》 北大核心 2019年第3期289-298,共10页
针对稀疏孔径条件下双基地ISAR成像分辨率低、运算时间长等问题,提出了一种基于快速稀疏贝叶斯学习的高分辨成像算法。首先,建立基于压缩感知的双基地ISAR稀疏孔径回波模型,然后将整个二维回波数据进行分块处理,并假设目标图像各像元服... 针对稀疏孔径条件下双基地ISAR成像分辨率低、运算时间长等问题,提出了一种基于快速稀疏贝叶斯学习的高分辨成像算法。首先,建立基于压缩感知的双基地ISAR稀疏孔径回波模型,然后将整个二维回波数据进行分块处理,并假设目标图像各像元服从高斯先验,建立稀疏贝叶斯模型,再利用快速边缘似然函数最大化方法求解得到高质量目标图像,最后将所求的每块回波对应的目标图像合成整个二维图像。由于采取了分块处理,在每块图像重构时减少了数据存储量和计算量。另外,相比于传统的稀疏贝叶斯学习求解方法,本文所提快速算法在保证重构质量的同时进一步缩短了运算时间,仿真实验验证了算法的有效性和优越性。 展开更多
关键词 双基地逆合成孔径雷达 稀疏孔径 稀疏贝叶斯学习 快速边缘似然函数最大化
下载PDF
改进嵌套稀疏圆阵下基于OGSBL的DOA估计方法
19
作者 史鑫磊 张贞凯 《电光与控制》 CSCD 北大核心 2022年第4期37-43,共7页
针对现有基于嵌套稀疏圆阵DOA估计方法计算复杂度高、超参数无法快速选取问题,提出了一种基于改进嵌套稀疏圆阵的离格稀疏贝叶斯学习(OGSBL)方法。该方法首先将改进嵌套稀疏圆阵接收信号的协方差矩阵进行向量化处理,然后构造扩展的观测... 针对现有基于嵌套稀疏圆阵DOA估计方法计算复杂度高、超参数无法快速选取问题,提出了一种基于改进嵌套稀疏圆阵的离格稀疏贝叶斯学习(OGSBL)方法。该方法首先将改进嵌套稀疏圆阵接收信号的协方差矩阵进行向量化处理,然后构造扩展的观测矩阵,进而结合离格模型与稀疏贝叶斯学习算法实现欠定的DOA估计。仿真实验结果表明,所提算法降低了计算复杂度,模型超参数可自适应调整,且在低信噪比、小快拍数和多信源情况下的均方根误差性能优于原嵌套稀疏圆阵和传统均匀圆阵的测向算法。 展开更多
关键词 波达角估计 虚拟化 嵌套稀疏圆阵 离格稀疏贝叶斯学习
下载PDF
结合SBL的双脉冲频控阵雷达离网目标定位方法
20
作者 何垣鑫 刘庆华 +2 位作者 黄声培 肖菁颖 朱彩球 《信号处理》 CSCD 北大核心 2020年第10期1760-1774,共15页
目标定位是雷达信号处理中一个具有重要理论意义与实际意义问题。为解决频控阵雷达传统的目标定位算法存在计算量大、目标真实位置偏离空间离散采样网格等问题。本文将频控阵雷达特性与离网稀疏贝叶斯模型结合提出了基于稀疏贝叶斯学习... 目标定位是雷达信号处理中一个具有重要理论意义与实际意义问题。为解决频控阵雷达传统的目标定位算法存在计算量大、目标真实位置偏离空间离散采样网格等问题。本文将频控阵雷达特性与离网稀疏贝叶斯模型结合提出了基于稀疏贝叶斯学习的双脉冲频控阵雷达离网目标定位算法。频控阵雷达发送两个脉冲,其频率偏移量分别为零和非零,然后基于离网稀疏贝叶斯模型估计目标的方位角与斜距。这种方法可以理解为当频控阵雷达以零频偏发射脉冲时,在角度域中检测目标,然后通过适当选择非零频率偏移量在距离域中对目标定位。仿真结果表明,即使在较粗糙的采样网格下,该算法也能保持较高的估计精度,显示了其优于传统算法的优势,证明了该方法的有效性与可靠性。 展开更多
关键词 目标定位 频控阵雷达 稀疏贝叶斯学习 离网 双脉冲
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部