Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,...Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.展开更多
Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity ...Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.展开更多
At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achievi...At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.展开更多
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ...At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.展开更多
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un...Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.展开更多
We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source sep...We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source separation, the artificial neural network with single-layer perceptron is introduced into the proposed algorithm. Source signals are regarded as the weight vector of single-layer perceptron, and approximate ι~0-norm is taken into account for output error decision rule of the perceptron, which leads to the sparse recovery. Then the procedure of source recovery is adjusting the weight vector of the perceptron. What's more, the optimal learning factor is calculated and a descent sequence of smoothed parameter is used during iteration, which improves the performance and significantly decreases computational complexity of the proposed algorithm. The simulation results reveal that the algorithm proposed can recover the source signal with high precision, while it requires lower computational cost.展开更多
Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic pro...Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.展开更多
To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically r...To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically realize the optimal learning rates without the classical saturation problem.In other words,deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates.The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.展开更多
Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontroll...Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.展开更多
In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficien...In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.展开更多
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int...The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.展开更多
In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting...In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.展开更多
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed...Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed.展开更多
The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWa...The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.展开更多
The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these...The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.展开更多
Smart grid is envisaged as a power grid that is extremely reliable and flexible.The electrical grid has wide-area measuring devices like Phasor measurement units(PMUs)deployed to provide real-time grid information and...Smart grid is envisaged as a power grid that is extremely reliable and flexible.The electrical grid has wide-area measuring devices like Phasor measurement units(PMUs)deployed to provide real-time grid information and resolve issues effectively and speedily without compromising system availability.The development and application of machine learning approaches for power system protection and state estimation have been facilitated by the availability of measurement data.This research proposes a transmission line fault detection and classification(FD&C)system based on an auto-encoder neural network.A comparison between a Multi-Layer Extreme Learning Machine(ML-ELM)network model and a Stacked Auto-Encoder neural network(SAE)is made.Additionally,the performance of the models developed is compared to that of state-of-the-art classifier models employing feature datasets acquired by wavelet transform based feature extraction as well as other deep learning models.With substantially shorter testing time,the suggested auto-encoder models detect faults with 100% accuracy and classify faults with 99.92% and 99.79%accuracy.The computational efficiency of the ML-ELM model is demonstrated with high accuracy of classification with training time and testing time less than 50 ms.To emulate real system scenarios the models are developed with datasets with noise with signal-to-noise-ratio(SNR)ranging from 10 dB to 40 dB.The efficacy of the models is demonstrated with data from the IEEE 39 bus test system.展开更多
Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based att...Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based attack methods are chosen to add perturbations on each pixel of the original image with the same weight,resulting in redundant noise in the adversarial examples,which makes them easier to be detected.Given this deliberation,a novel attentionguided sparse adversarial attack strategy with gradient dropout that can be readily incorporated with existing gradient-based methods is introduced to minimize the intensity and the scale of perturbations and ensure the effectiveness of adversarial examples at the same time.Specifically,in the gradient dropout phase,some relatively unimportant gradient information is randomly discarded to limit the intensity of the perturbation.In the attentionguided phase,the influence of each pixel on the model output is evaluated by using a soft mask-refined attention mechanism,and the perturbation of those pixels with smaller influence is limited to restrict the scale of the perturbation.After conducting thorough experiments on the NeurIPS 2017 adversarial dataset and the ILSVRC 2012 validation dataset,the proposed strategy holds the potential to significantly diminish the superfluous noise present in adversarial examples,all while keeping their attack efficacy intact.For instance,in attacks on adversarially trained models,upon the integration of the strategy,the average level of noise injected into images experiences a decline of 8.32%.However,the average attack success rate decreases by only 0.34%.Furthermore,the competence is possessed to substantially elevate the attack success rate by merely introducing a slight degree of perturbation.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52005103,71801046,51775112,51975121)Guangdong Province Basic and Applied Basic Research Foundation of China(Grant No.2019B1515120095)+1 种基金Intelligent Manufacturing PHM Innovation Team Program(Grant Nos.2018KCXTD029,TDYB2019010)MoST International Cooperation Program(6-14).
文摘Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.
基金funded by the National Natural Science Foundation of China(Grant No.52274048)Beijing Natural Science Foundation(Grant No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(Grant No.2021DJ2104)the Science Foundation of China University of Petroleum-Beijing(No.2462021YXZZ010).
文摘Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.
基金This study was supported by the National Natural Science Foundation of China under the project‘Research on the Dynamic Location of Receiver Points and Wave Field Separation Technology Based on Deep Learning in OBN Seismic Exploration’(No.42074140).
文摘At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.
基金supported by the Sichuan Science and Technology Program under Grants No.2022YFQ0052 and No.2021YFQ0009.
文摘At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.
基金supported in part by the National Natural Science Foundation of China(No.51606213)the National Major Science and Technology Projects(No.J2019-III-0010-0054)。
文摘Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.
基金supported by National Nature Science Foundation of China under Grant (61201134, 61401334)Key Research and Development Program of Shaanxi (Contract No. 2017KW-004, 2017ZDXM-GY-022)
文摘We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source separation, the artificial neural network with single-layer perceptron is introduced into the proposed algorithm. Source signals are regarded as the weight vector of single-layer perceptron, and approximate ι~0-norm is taken into account for output error decision rule of the perceptron, which leads to the sparse recovery. Then the procedure of source recovery is adjusting the weight vector of the perceptron. What's more, the optimal learning factor is calculated and a descent sequence of smoothed parameter is used during iteration, which improves the performance and significantly decreases computational complexity of the proposed algorithm. The simulation results reveal that the algorithm proposed can recover the source signal with high precision, while it requires lower computational cost.
文摘Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.
基金Supported by the National Natural Science Foundation of China(61806162,12271431,12171388)Shaanxi Mathematical Basic Science Research Project 22JSQ023。
文摘To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically realize the optimal learning rates without the classical saturation problem.In other words,deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates.The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.
基金supported by the National Natural Science Foundation of China(Grant No.61871380)the Shandong Provincial Natural Science Foundation(Grant No.ZR2020MF019)Beijing Natural Science Foundation(Grant No.4172034).
文摘Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.
文摘In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.
基金Researchers Supporting Project Number(RSP2024R206),King Saud University,Riyadh,Saudi Arabia.
文摘The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.
文摘In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.
文摘Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed.
基金This work is supported in part by the National Natural Science Foundation of China under grants 61901403,61971366 and 61971365in part by the Youth Innovation Fund of Xiamen under grant 3502Z20206039in part by the Natural Science Foundation of Fujian Province of China under grant 2019J05001.
文摘The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.
基金This work was supported by Research on the Influences of Network Security Threat Intelligence on Sichuan Government and Enterprises and the Development Countermeasure(Project ID 2018ZR0220)Research on Key Technologies of Network Security Protection in Intelligent Vehicle Based on(Project ID 2018JY0510)+3 种基金the Research on Abnormal Behavior Detection Technology of Automotive CAN Bus Based on Information Entropy(Project ID 2018Z105)the Research on the Training Mechanism of Driverless Network Safety Talents for Sichuan Auto Industry Based on Industry-University Synergy(Project ID 18RKX0667),Research and implementation of traffic cooperative perception and traffic signal optimization of main road(Project ID 2018YF0500707SN)Research and implementation of intelligent traffic control and monitoring system(Project ID 2019YGG0201)Remote upgrade system of intelligent vehicle software(Project ID 2018GZDZX0011).
文摘The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.
文摘Smart grid is envisaged as a power grid that is extremely reliable and flexible.The electrical grid has wide-area measuring devices like Phasor measurement units(PMUs)deployed to provide real-time grid information and resolve issues effectively and speedily without compromising system availability.The development and application of machine learning approaches for power system protection and state estimation have been facilitated by the availability of measurement data.This research proposes a transmission line fault detection and classification(FD&C)system based on an auto-encoder neural network.A comparison between a Multi-Layer Extreme Learning Machine(ML-ELM)network model and a Stacked Auto-Encoder neural network(SAE)is made.Additionally,the performance of the models developed is compared to that of state-of-the-art classifier models employing feature datasets acquired by wavelet transform based feature extraction as well as other deep learning models.With substantially shorter testing time,the suggested auto-encoder models detect faults with 100% accuracy and classify faults with 99.92% and 99.79%accuracy.The computational efficiency of the ML-ELM model is demonstrated with high accuracy of classification with training time and testing time less than 50 ms.To emulate real system scenarios the models are developed with datasets with noise with signal-to-noise-ratio(SNR)ranging from 10 dB to 40 dB.The efficacy of the models is demonstrated with data from the IEEE 39 bus test system.
基金Fundamental Research Funds for the Central Universities,China(No.2232021A-10)Shanghai Sailing Program,China(No.22YF1401300)+1 种基金Natural Science Foundation of Shanghai,China(No.20ZR1400400)Shanghai Pujiang Program,China(No.22PJ1423400)。
文摘Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based attack methods are chosen to add perturbations on each pixel of the original image with the same weight,resulting in redundant noise in the adversarial examples,which makes them easier to be detected.Given this deliberation,a novel attentionguided sparse adversarial attack strategy with gradient dropout that can be readily incorporated with existing gradient-based methods is introduced to minimize the intensity and the scale of perturbations and ensure the effectiveness of adversarial examples at the same time.Specifically,in the gradient dropout phase,some relatively unimportant gradient information is randomly discarded to limit the intensity of the perturbation.In the attentionguided phase,the influence of each pixel on the model output is evaluated by using a soft mask-refined attention mechanism,and the perturbation of those pixels with smaller influence is limited to restrict the scale of the perturbation.After conducting thorough experiments on the NeurIPS 2017 adversarial dataset and the ILSVRC 2012 validation dataset,the proposed strategy holds the potential to significantly diminish the superfluous noise present in adversarial examples,all while keeping their attack efficacy intact.For instance,in attacks on adversarially trained models,upon the integration of the strategy,the average level of noise injected into images experiences a decline of 8.32%.However,the average attack success rate decreases by only 0.34%.Furthermore,the competence is possessed to substantially elevate the attack success rate by merely introducing a slight degree of perturbation.