In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of cal...In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ...A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.展开更多
The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWa...The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional anten...Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS) and mobile sets (MS). Unlike the conventional MIMO systems, Millimeter-wave (mmW) systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining) architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV) greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC) which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.展开更多
This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage ...This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.展开更多
In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0...In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.展开更多
Acoustic Mode Analysis(AMA)for aero-engines can offer valuable insights for the design of silent engines as well as for fault diagnosis.Commonly,this is done in the(spatial)Fourier domain,necessitating the use of mult...Acoustic Mode Analysis(AMA)for aero-engines can offer valuable insights for the design of silent engines as well as for fault diagnosis.Commonly,this is done in the(spatial)Fourier domain,necessitating the use of multiple uniformly spaced microphones to ensure adequate resolution.Recent works show that sub-Nyquist estimation is feasible using sparse reconstruction frameworks,although such modelling generally introduces an estimation bias that has to be compensated for.Moreover,there is a growing interest in monitoring mode amplitude over continuous time,as it can offer crucial insights for diagnosing operational conditions.In this work,we introduce a Block Orthogonal Matching Pursuit(BOMP)method for continuous time mode analysis,exploiting the underlying structural sparsity of the signal model.Specifically,the(pseudo)‘0ànorm penalty is employed to induce sparsity in the wavenumber domain,whereas a block structure is imposed as a constraint to monitor the amplitude variation in the time domain.The effectiveness of the BOMP is evaluated using both numerical simulations and experimental measurements,indicating the proposed method's preferable performance as compared to the classic Least Absolute Shrinkage and Selection Operator(LASSO)and Orthogonal Matching Pursuit(OMP)methods.展开更多
This paper proposes a method for modelling volatilities(conditional covariance matrices)of high dimensional dynamic data.We combine the ideas of approximate factor models for dimension reduction and multivariate GARCH...This paper proposes a method for modelling volatilities(conditional covariance matrices)of high dimensional dynamic data.We combine the ideas of approximate factor models for dimension reduction and multivariate GARCH models to establish a model to describe the dynamics of high dimensional volatilities.Sparsity condition and thresholding technique are applied to the estimation of the error covariance matrices,and quasi maximum likelihood estimation(QMLE)method is used to estimate the parameters of the common factor conditional covariance matrix.Asymptotic theories are developed for the proposed estimation.Monte Carlo simulation studies and real data examples are presented to support the methodology.展开更多
This paper presents a novel adaptive wide-band compressed spectrum sensing scheme for cognitive radio(CR)networks.Compared to the traditional CSS-based CR scenarios,the proposed approach reconstructs neither the recei...This paper presents a novel adaptive wide-band compressed spectrum sensing scheme for cognitive radio(CR)networks.Compared to the traditional CSS-based CR scenarios,the proposed approach reconstructs neither the received signal nor its spectrum during the compressed sensing procedure.On the contrary,a precise estimation of wide spectrum support is recovered with a fewer number of compressed measurements.Then,the spectrum occupancy is determined directly from the reconstructed support vector.To carry out this process,a data-driven methodology is utilized to obtain the mini-mum number of necessary samples required for support reconstruction,and a closed-form expression is obtained that optimally estimates the number of desired samples as a function of the sparsity level and number of channels.Following this phase,an adjustable sequential framework is developed where the first step predicts the optimal number of compressed measurements and the second step recovers the sparse support and makes sensing decision.Theoretical analysis and numerical simulations demonstrate the improvement achieved with the proposed algorithm to significantly reduce both sampling costs and average sensing time without any deterioration in detection performance.Furthermore,the remainder of the sensing time can be employed by secondary users for data transmission,thus leading to the enhancement of the total throughput of the CR network.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)(No.U1806201,61671261)Project of Shandong Province Higher Educational Science and Technology Program(No.J17KA058,J17KB154).
文摘In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金supported by the National Natural Science Foundation of China(6127130061405150)
文摘A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.
基金This work is supported in part by the National Natural Science Foundation of China under grants 61901403,61971366 and 61971365in part by the Youth Innovation Fund of Xiamen under grant 3502Z20206039in part by the Natural Science Foundation of Fujian Province of China under grant 2019J05001.
文摘The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.
文摘Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS) and mobile sets (MS). Unlike the conventional MIMO systems, Millimeter-wave (mmW) systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining) architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV) greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC) which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.
基金The work was supported in part by the National Natural Science Foundation of China(Nos.11431002,11171018,71271021,11301022).
文摘This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.
基金supported by the National Nature Science Foundation of China(61372128)the Scientific&Technological Support Project(Industry)of Jiangsu Province(BE2011195)
文摘In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.
基金supported by the National Natural Science Foundation of China(No.52075414)the China Postdoctoral Science Foundation(No.2021M702595)the China Scholarship Council。
文摘Acoustic Mode Analysis(AMA)for aero-engines can offer valuable insights for the design of silent engines as well as for fault diagnosis.Commonly,this is done in the(spatial)Fourier domain,necessitating the use of multiple uniformly spaced microphones to ensure adequate resolution.Recent works show that sub-Nyquist estimation is feasible using sparse reconstruction frameworks,although such modelling generally introduces an estimation bias that has to be compensated for.Moreover,there is a growing interest in monitoring mode amplitude over continuous time,as it can offer crucial insights for diagnosing operational conditions.In this work,we introduce a Block Orthogonal Matching Pursuit(BOMP)method for continuous time mode analysis,exploiting the underlying structural sparsity of the signal model.Specifically,the(pseudo)‘0ànorm penalty is employed to induce sparsity in the wavenumber domain,whereas a block structure is imposed as a constraint to monitor the amplitude variation in the time domain.The effectiveness of the BOMP is evaluated using both numerical simulations and experimental measurements,indicating the proposed method's preferable performance as compared to the classic Least Absolute Shrinkage and Selection Operator(LASSO)and Orthogonal Matching Pursuit(OMP)methods.
基金supported by the National Natural Science Foundation of China(Nos.11731015,11701116)Innovative Team Project of Ordinary Universities in Guangdong Province(No.2020WCXTD018)Guangzhou University Research Fund(Nos.YG2020029,YH202108)。
文摘This paper proposes a method for modelling volatilities(conditional covariance matrices)of high dimensional dynamic data.We combine the ideas of approximate factor models for dimension reduction and multivariate GARCH models to establish a model to describe the dynamics of high dimensional volatilities.Sparsity condition and thresholding technique are applied to the estimation of the error covariance matrices,and quasi maximum likelihood estimation(QMLE)method is used to estimate the parameters of the common factor conditional covariance matrix.Asymptotic theories are developed for the proposed estimation.Monte Carlo simulation studies and real data examples are presented to support the methodology.
文摘This paper presents a novel adaptive wide-band compressed spectrum sensing scheme for cognitive radio(CR)networks.Compared to the traditional CSS-based CR scenarios,the proposed approach reconstructs neither the received signal nor its spectrum during the compressed sensing procedure.On the contrary,a precise estimation of wide spectrum support is recovered with a fewer number of compressed measurements.Then,the spectrum occupancy is determined directly from the reconstructed support vector.To carry out this process,a data-driven methodology is utilized to obtain the mini-mum number of necessary samples required for support reconstruction,and a closed-form expression is obtained that optimally estimates the number of desired samples as a function of the sparsity level and number of channels.Following this phase,an adjustable sequential framework is developed where the first step predicts the optimal number of compressed measurements and the second step recovers the sparse support and makes sensing decision.Theoretical analysis and numerical simulations demonstrate the improvement achieved with the proposed algorithm to significantly reduce both sampling costs and average sensing time without any deterioration in detection performance.Furthermore,the remainder of the sensing time can be employed by secondary users for data transmission,thus leading to the enhancement of the total throughput of the CR network.