期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pulse Signal Recovery Method Based on Sparse Representation
1
作者 Jiangmei Zhang Haibo Ji +2 位作者 Qingping Zhu Hongsen He Kunpeng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期161-168,共8页
Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conven... Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery. 展开更多
关键词 signal recovery pulse signal sparse representation matching pursuit
下载PDF
Dwell Scheduling Algorithm for Digital Array Radar
2
作者 Qun Zhang Di Meng +1 位作者 Ying Luo Yijun Chen 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期74-82,共9页
Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures t... Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures that the imaging tasks are scheduled without affecting the search and tracking tasks; Then,the optimal scheduling model of radar resource is established according to the constraints of pulse interleaving; Finally,a heuristic algorithm is used to solve the problem and a sparse-aperture cognitive ISAR imaging method is used to achieve partial precision tracking target imaging. Simulation results demonstrate that the proposed algorithm can both improve the performance of the radar system,and generate satisfactory imaging results. 展开更多
关键词 digital array radar(DAR) resource optimal scheduling pulse interleaving sparse aperture imaging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部