To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t...To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small...Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.展开更多
Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr...Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.展开更多
Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)alg...In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.展开更多
Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conven...Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery.展开更多
Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-di- mensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by th...Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-di- mensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by the antenna length and bandwidth of transmitted signal. However, for sparse signals (direct or indirect), sparse imaging methods can break through limitations of the conventional SAR methods. In this paper, we introduce the basic theory of sparse representation and reconstruction, and then analyze several common sparse imaging algorithms: the greed algorithm, the convex optimization algorithm. We apply some of these algorithms into SAR imaging using RadBasedata. The results show the presented method based on sparse construction theory outperforms the conventional SAR method based on MF theory.展开更多
The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed...The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed sensing. It identifies multiple N indices per iteration to reconstruct sparse signals.The gOMP with N≥2 can perfectly reconstruct any K-sparse signals frommeasurement y = Φx if K 〈1/N(1/μ-1) +1,where μ is coherence parameter of measurement matrix Φ. Furthermore,the performance of the gOMP in the case of y = Φx + e with bounded noise ‖e‖2≤ε is analyzed and the sufficient condition ensuring identification of correct indices of sparse signals via the gOMP is derived,i. e.,K 〈1/N(1/μ-1)+1-(2ε/Nμxmin) ,where x min denotes the minimummagnitude of the nonzero elements of x. Similarly,the sufficient condition in the case of G aussian noise is also given.展开更多
This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exa...This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm, and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for recovering the support of k-sparse signal is also presented. Generally, the computation for the restricted isometry constant (RIC) in these sufficient conditions is typically difficult, therefore we provide a new condition which is not only computable but also sufficient for the exact recovery of all k-sparse signals.展开更多
In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data ...In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data with noises and without noises,we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre polynomials,Chebyshev polynomials and trigonometric polynomials in s step iterations.The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials.Finally,numerical experiments will be presented to verify the effectiveness of the QOMP method.展开更多
Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classi...Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.展开更多
针对经典最近等值线迭代(ICCP)算法因重力异常测量误差导致匹配精度下降甚至失效的问题,提出联合抗差匹配算法以提高匹配精度及可靠性。首先,分析了匹配点集间的匹配残差在高斯噪声影响下呈非高斯分布,为抑制其影响,采用l_(p)范数代替l_...针对经典最近等值线迭代(ICCP)算法因重力异常测量误差导致匹配精度下降甚至失效的问题,提出联合抗差匹配算法以提高匹配精度及可靠性。首先,分析了匹配点集间的匹配残差在高斯噪声影响下呈非高斯分布,为抑制其影响,采用l_(p)范数代替l_(2)范数计算匹配残差,并利用匹配残差重调野值点以获得有效的匹配区域。在此基础上,提出混合稀疏ICCP算法,并利用其进行粗匹配,然后将粗匹配后的位置作为惯导系统(INS)指示位置,再使用经典ICCP算法进行精匹配,获得更高的定位精度。仿真结果表明,考虑重力异常测量误差的情况下,重力联合抗差匹配算法的误差最大值小于1 n mile,导航精度较传统ICCP算法提升60%以上,提升了算法的鲁棒性和匹配精度。展开更多
基金The National Basic Research Program of China(973Program)(No.2013CB329003)
文摘To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
基金supported by the Inter-governmental Science and Technology Cooperation Project (2009DFA12870)
文摘Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.
基金Project(2014AA06A602)supported by the National High-Tech Research and Development Program of ChinaProjects(41404111,41304098)supported by the National Natural Science Foundation of ChinaProject(2015JJ3088)supported by the Natural Science Foundation of Hunan Province,China
文摘Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.
文摘In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly.
基金Supported by the National Natural Science Foundation of China(61501385)Science and Technology Planning Project of Sichuan Province,China(2016JY0242,2016GZ0210)Foundation of Southwest University of Science and Technology(15kftk02,15kffk01)
文摘Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery.
文摘Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-di- mensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by the antenna length and bandwidth of transmitted signal. However, for sparse signals (direct or indirect), sparse imaging methods can break through limitations of the conventional SAR methods. In this paper, we introduce the basic theory of sparse representation and reconstruction, and then analyze several common sparse imaging algorithms: the greed algorithm, the convex optimization algorithm. We apply some of these algorithms into SAR imaging using RadBasedata. The results show the presented method based on sparse construction theory outperforms the conventional SAR method based on MF theory.
基金Supported by the National Natural Science Foundation of China(60119944,61331021)the National Key Basic Research Program Founded by MOST(2010C B731902)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT1005)Beijing Higher Education Young Elite Teacher Project(YET P1159)
文摘The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed sensing. It identifies multiple N indices per iteration to reconstruct sparse signals.The gOMP with N≥2 can perfectly reconstruct any K-sparse signals frommeasurement y = Φx if K 〈1/N(1/μ-1) +1,where μ is coherence parameter of measurement matrix Φ. Furthermore,the performance of the gOMP in the case of y = Φx + e with bounded noise ‖e‖2≤ε is analyzed and the sufficient condition ensuring identification of correct indices of sparse signals via the gOMP is derived,i. e.,K 〈1/N(1/μ-1)+1-(2ε/Nμxmin) ,where x min denotes the minimummagnitude of the nonzero elements of x. Similarly,the sufficient condition in the case of G aussian noise is also given.
基金The authors are very grateful to the anonymous referees for their valuable comments and suggestions. We want to thank Mr. Liang Chen at Hunan University for many useful comments. This work was supported by the National Natural Science Foundation of China under Grant 11271117.
文摘This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm, and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for recovering the support of k-sparse signal is also presented. Generally, the computation for the restricted isometry constant (RIC) in these sufficient conditions is typically difficult, therefore we provide a new condition which is not only computable but also sufficient for the exact recovery of all k-sparse signals.
基金supported by National Natural Science Foundation of China no.12071019.
文摘In this paper,we propose a Quasi-Orthogonal Matching Pursuit(QOMP)algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials.For the two kinds of sampled data,data with noises and without noises,we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre polynomials,Chebyshev polynomials and trigonometric polynomials in s step iterations.The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials.Finally,numerical experiments will be presented to verify the effectiveness of the QOMP method.
基金supported by the National Natural Science Foundation of China(Grant No.12071019).
文摘Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.
文摘针对经典最近等值线迭代(ICCP)算法因重力异常测量误差导致匹配精度下降甚至失效的问题,提出联合抗差匹配算法以提高匹配精度及可靠性。首先,分析了匹配点集间的匹配残差在高斯噪声影响下呈非高斯分布,为抑制其影响,采用l_(p)范数代替l_(2)范数计算匹配残差,并利用匹配残差重调野值点以获得有效的匹配区域。在此基础上,提出混合稀疏ICCP算法,并利用其进行粗匹配,然后将粗匹配后的位置作为惯导系统(INS)指示位置,再使用经典ICCP算法进行精匹配,获得更高的定位精度。仿真结果表明,考虑重力异常测量误差的情况下,重力联合抗差匹配算法的误差最大值小于1 n mile,导航精度较传统ICCP算法提升60%以上,提升了算法的鲁棒性和匹配精度。