期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Local Robust Sparse Representation for Face Recognition With Single Sample per Person 被引量:5
1
作者 Jianquan Gu Haifeng Hu Haoxi Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期547-554,共8页
The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) ... The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) to tackle the problem of query images with various intra-class variations,e.g., expressions, illuminations, and occlusion. FR with SSPP is a very difficult challenge due to lacking of information to predict the possible intra-class variation of the query images.The key idea of the proposed method is to combine a local sparse representation model and a patch-based generic variation dictionary learning model to predict the possible facial intraclass variation of the query images. The experimental results on the AR database, Extended Yale B database, CMU-PIE database and LFW database show that the proposed method is robust to intra-class variations in FR with SSPP, and outperforms the state-of-art approaches. 展开更多
关键词 Index Terms-Dictionary learning face recognition (FR) il-lumination changes single sample per person (SSPP) sparserepresentation.
下载PDF
Removal of White Noise from ECG Signal Based on Morphological Component Analysis 被引量:5
2
作者 ZHAO Wei HUANG Xiao-jing YOU Rong-yi 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第1期1-6,共6页
To effectively suppress white noise and preserve more useful components of electrocardiogram(ECG) signal, a novel de-noising method based on morphological component analysis(MCA) is proposed. MCA is a method which all... To effectively suppress white noise and preserve more useful components of electrocardiogram(ECG) signal, a novel de-noising method based on morphological component analysis(MCA) is proposed. MCA is a method which allows us to separate features contained in an original signal when these features present different morphological aspects. According to the features of ECG, we used the UWT dictionary to sparsely represent mutated component, and used the DCT dictionary to sparsely represent smooth component. The experimental results of the samples choosing from MIT-BIH databases show that the MCA-based method is effective for white noise removal. 展开更多
关键词 ECG signal morphological component analysis (MCA) sparserepresentation DE-NOISING
原文传递
NONNEGATIVE MATRIX FACTORIZATION WITH BAND CONSTRAINT
3
作者 Xiangxiang Zhu Jicheng Li Zhuosheng Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2018年第6期761-775,共15页
In this paper, we study a band constrained nonnegative matrix factorization (band NMF) problem: for a given nonnegative matrix Y, decompose it as Y ≈ AX with A a nonnegative matrix and X a nonnegative block band m... In this paper, we study a band constrained nonnegative matrix factorization (band NMF) problem: for a given nonnegative matrix Y, decompose it as Y ≈ AX with A a nonnegative matrix and X a nonnegative block band matrix. This factorization model extends a single low rank subspace model to a mixture of several overlapping low rank subspaces, which not only can provide sparse representation, but also can capture signifi- cant grouping structure from a dataset. Based on overlapping subspace clustering and the capture of the level of overlap between neighbouring subspaces, two simple and practical algorithms are presented to solve the band NMF problem. Numerical experiments on both synthetic data and real images data show that band NMF enhances the performance of NMF in data representation and processing. 展开更多
关键词 Nonnegative matrix factorization Band structure Subspace clustering sparserepresentation Image compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部