This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer....This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.展开更多
文摘This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.