In this analysis, natural systems are posed to subsystemize in a manner facilitating both structured information/energy sharing and an entropy maximization process projecting a three-dimensional, spatial outcome. Nume...In this analysis, natural systems are posed to subsystemize in a manner facilitating both structured information/energy sharing and an entropy maximization process projecting a three-dimensional, spatial outcome. Numerical simulations were first carried out to determine whether n × n input-output matrices could, once entropy-maximized, project a three-dimensional Euclidean metric. Only 4 × 4 matrices could;a small proportion passed the test. Larger proportions passed when grouped random patterns on and within two- and three-dimensional forms were tested. The pattern of structural zonation within the earth was then tested in analogous fashion using spatial autocorrelation measures, and for three time periods: current, 95 million years b.p. and 200 million years b.p. All expected results were obtained;not only do the geometries of zonation project a three-dimensional structure as anticipated, but also do secondary statistical measures reveal levels of equilibrium among the zones in all three cases that are nearly total, distinguishing them from simulations that do not incorporate a varying-surface zone-width element.展开更多
Information on crop acreage is important for formulating national food polices and economic planning. Spatial sampling, a combination of traditional sampling methods and remote sensing and geographic information syst...Information on crop acreage is important for formulating national food polices and economic planning. Spatial sampling, a combination of traditional sampling methods and remote sensing and geographic information system (GIS) technology, provides an efficient way to estimate crop acreage at the regional scale. Traditional sampling methods require that the sampling units should be independent of each other, but in practice there is often spatial autocorrelation among crop acreage contained in the sampling units. In this study, using Dehui County in Jilin Province, China, as the study area, we used a thematic crop map derived from Systeme Probatoire d'Observation de la Terre (SPOT-5) imagery, cultivated land plots and digital elevation model data to explore the spatial autocorrelation characteristics among maize and rice acreage included in sampling units of different sizes, and analyzed the effects of different stratification criteria on the level of spatial autocorrelation of the two crop acreages within the sampling units. Moran's/, a global spatial autocorrelation index, was used to evaluate the spatial autocorrelation among the two crop acreages in this study. The results showed that although the spatial autocorrelation level among maize and rice acreages within the sampling units generally decreased with increasing sampling unit size, there was still a significant spatial autocorrelation among the two crop acreages included in the sampling units (Moran's / varied from 0.49 to 0.89), irrespective of the sampling unit size. When the sampling unit size was less than 3000 m, the stratification design that used crop planting intensity (CPI) as the stratification criterion, with a stratum number of 5 and a stratum interval of 20% decreased the spatial autocorrelation level to almost zero for the maize and rice area included in sampling units within each stratum. Therefore, the traditional sampling methods can be used to estimate the two crop acreages. Compared with CPI, there was still a strong spatial correlation among the two crop acreages included in the sampling units belonging to each stratum when cultivated land fragmentation and ground slope were used as stratification criterion. As far as the selection of stratification criteria and sampling unit size is concerned, this study provides a basis for formulating a reasonable spatial sampling scheme to estimate crop acreage.展开更多
This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Provi...This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Province. GIS and spatial statistics provide a useful way for describing the distribution of urban land price both spatially and temporally, and have proved to be useful for understanding land price distribution pattern better. In this paper, we apply the statistical analysis method to 8379 urban land price samples collected from Changzhou Land Market, and it is turned out that the proposed approach can effectively identify the spatial clusters and local point patterns in dataset and forms a general method for conceptualizing the land price structure. The results show that land price structure in Changzhou City is very complex and that even where there is a high spatial autocorrelation, the land price is still relatively heterogeneous. Furthermore, lands for different uses have different degrees of spatial autocorrelation. Spatial autocorrelation of commercial lands is more intense than that of residential and industrial lands in regional central district. This means that treating land price as integration of homogeneous units can limit analysis of pattern, over-simplifying the structure of land price, but the methods, just as the autocorrelation approaches, are useful tools for quantifying the variables of land price.展开更多
Popular regional inequality indexes such as variation coefficient and Gini coefficient can only reveal overall inequality, and have limited ability in revealing spatial dependence or spatial agglomeration. Recently so...Popular regional inequality indexes such as variation coefficient and Gini coefficient can only reveal overall inequality, and have limited ability in revealing spatial dependence or spatial agglomeration. Recently some methods of exploratory spatial data analysis such as spatial autocorrelation have provided effective tools to analyze spatial agglomeration and cluster, which can reveal the pattern of regional inequality. This article attempts to use spatial autocorrelation at county level to get refined spatial pattern of regional disparity in Chinese northeast economic region over 2000-2006 (2001 absent). The result indicates that the basic trend of regional economy is an increasing concentration of growth among counties in northeast economic region, and there are two geographical clusters of poorer counties including the counties in western Liaoning Province and adjacent counties in Inner Mongolia, poorer counties of Heihe, Qiqihar and Suihua in Heilongjiang Province. This article also reveals that we can use the methods of exploratory spatial data analysis as the supplementary analysis methods in regional economic analysis.展开更多
Define and theory of autocorrelation decision tree (ADT) is introduced. In spatial data mining, spatial parallel query are very expensive operations. A new parallel algorithm in terms of autocorrelation decision tre...Define and theory of autocorrelation decision tree (ADT) is introduced. In spatial data mining, spatial parallel query are very expensive operations. A new parallel algorithm in terms of autocorrelation decision tree is presented. And the new method reduces CPU- and I/O-time and improves the query efficiency of spatial data. For dynamic load balancing, there are better control and optimization. Experimental performance comparison shows that the improved algorithm can obtain a optimal accelerator with the same quantities of processors. There are more completely accesses on nodes. And an individual implement of intelligent information retrieval for spatial data mining is presented.展开更多
Catch per unit of eff ort(CPUE) data can display spatial autocorrelation. However, most of the CPUE standardization methods developed so far assumes independency of observations for the dependent variable, which is of...Catch per unit of eff ort(CPUE) data can display spatial autocorrelation. However, most of the CPUE standardization methods developed so far assumes independency of observations for the dependent variable, which is often invalid. In this study, we collected data of two fisheries, squid jigging fishery and mackerel trawl fishery. We used standard generalized linear model(GLM) and spatial GLMs to compare the impact of spatial autocorrelation on CPUE standardization for different fisheries. We found that spatialGLMs perform better than standard-GLM for both fisheries. The overestimation of precision of CPUE estimates was observed in both fisheries. Moran's I was used to quantify the level of autocorrelation for the two fisheries. The results show that autocorrelation in mackerel trawl fishery was much stronger than that in squid jigging fishery. According to the results of this paper, we highly recommend to account for spatial autocorrelation when using GLM to standardize CPUE data derived from commercial fisheries.展开更多
A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban populatio...A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban population density. The new method and model are applied to Hangzhou City, China, as an example. The average distance of population activities, the auto-correlation coefficient of urban population density, and the auto-regressive function values all show trends of gradual increase from 1964 to 2000, but there always is a sharp first-order cutoff in the partial auto- correlations. These results indicate that urban development is a process of localization. The discovery of urban locality is significant to improve the cellular-automata-based urban simulation of modeling spatial complexity.展开更多
Spatial autocorrelation methodologies, including Global Moran’s I and Local Indicators of Spatial Association statistic (LISA), were used to describe and map spatial clusters of 13 leading malignant neoplasms in Taiw...Spatial autocorrelation methodologies, including Global Moran’s I and Local Indicators of Spatial Association statistic (LISA), were used to describe and map spatial clusters of 13 leading malignant neoplasms in Taiwan. A logistic regression fit model was also used to identify similar characteristics over time. Two time periods (1995-1998 and 2005-2008) were compared in an attempt to formulate common spatio-temporal risks. Spatial cluster patterns were identified using local spatial autocorrelation analysis. We found a significant spatio-temporal variation between the leading malignant neoplasms and well-documented spatial risk factors. For instance, in Taiwan, cancer of the oral cavity in males was found to be clustered in locations in central Taiwan, with distinct differences between the two time periods. Stomach cancer morbidity clustered in aboriginal townships, where the prevalence of Helicobacter pylori is high and even quite marked differences between the two time periods were found. A method which combines LISA statistics and logistic regression is an effective tool for the detection of space-time patterns with discontinuous data. Spatio-temporal mapping comparison helps to clarify issues such as the spatial aspects of both two time periods for leading malignant neoplasms. This helps planners to assess spatio-temporal risk factors, and to ascertain what would be the most advantageous types of health care policies for the planning and implementation of health care services. These issues can greatly affect the performance and effectiveness of health care services and also provide a clear outline for helping us to better understand the results in depth.展开更多
Spatial autocorrelation is a measure of the correlation of an observation with other observations through space. Most statistical analyses are based on the assumption that the values of observations are independent of...Spatial autocorrelation is a measure of the correlation of an observation with other observations through space. Most statistical analyses are based on the assumption that the values of observations are independent of one another. Spatial autocorrelation violates this assumption, because observations at near-by locations are related to each other, and hence, the consideration of spatial autocorrelations has been gaining attention in crash data modeling in recent years, and research have shown that ignoring this factor may lead to a biased estimation of the modeling parameters. This paper examines two spatial autocorrelation indices: Moran’s Index;and Getis-Ord Gi* statistic to measure the spatial autocorrelation of vehicle crashes occurred in Boone County roads in the state of Missouri, USA for the years 2013-2015. Since each index can identify different clustering patterns of crashes, therefore this paper introduces a new hybrid method to identify the crash clustering patterns by combining both Moran’s Index and Gi*?statistic. Results show that the new method can effectively improve the number, extent, and type of crash clustering along roadways.展开更多
Identifying vehicular crash high risk locations along highways is important for understanding the causes of vehicle crashes and to determine effective countermeasures based on the analysis. This paper presents a GIS a...Identifying vehicular crash high risk locations along highways is important for understanding the causes of vehicle crashes and to determine effective countermeasures based on the analysis. This paper presents a GIS approach to examine the spatial patterns of vehicle crashes and determines if they are spatially clustered, dispersed, or random. Moran’s I and Getis-Ord Gi* statistic are employed to examine spatial patterns, clusters mapping of vehicle crash data, and to generate high risk locations along highways. Kernel Density Estimation (KDE) is used to generate crash concentration maps that show the road density of crashes. The proposed approach is evaluated using the 2013 vehicle crash data in the state of Indiana. Results show that the approach is efficient and reliable in identifying vehicle crash hot spots and unsafe road locations.展开更多
Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to identify not only the location of such ho...Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to identify not only the location of such hotspots, but also their spatial patterns. We used spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters and areas in which nine malignant neoplasms are situated in Taiwan. In addition, we used a logistic regression model to test the characteristics of similarity and dissimilarity between males and females and to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis was used to identify spatial cluster patterns. We found a significant relationship between the leading malignant neoplasms and well-documented spatial risk factors. For instance, in Taiwan, the geographic distribution of clusters where oral cavity cancer in males is prevalent was closely correspond to the locations in central Taiwan with serious metal pollution. In females, clusters of oral cavity cancer were closely related with aboriginal townships in eastern Taiwan, where cigarette smoking, alcohol drinking, and betel nut chewing are commonplace. The difference between males and females in the spatial distributions was stark. Furthermore, areas with a high morbidity of gastric cancer were clustered in aboriginal townships where the occurrence of Helicobacter pylori is frequent. Our results revealed a similarity between both males and females in spatial pattern. Cluster mapping clarified the spatial aspects of both internal and external correlations for the nine malignant neoplasms. In addition, using a method of logistic regression also enabled us to find differentiation between gender-specific spatial patterns.展开更多
Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensi...Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.展开更多
This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in th...This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in the state of Georgia. Data on COVID-19 was acquired from usafact.org while the vaccination records were obtained from COVID-19 vaccination tracker. The spatial patterns across the counties were analyzed using spatial statistical techniques which include both global and local spatial autocorrelation. The study further evaluates the effect of vaccination and selected socio-economic predictors on COVID-19 cases across the study area. The result of hotspot analysis reveals that the epicenters of COVID-19 are distributed across Cobb, Fulton, Gwinnett, and DeKalb counties. It was also affirmed that the vaccination records followed the same pattern as COVID-19 cases’ epicenters. The result of the spatial error model performed well and accounted for a considerable percentage of the regression with an adjusted R squared of 0.68, Akaike Information Criterion (AIC) 387.682 and Breusch-Pagan of 9.8091. ESDA was employed to select the main explanatory variables. The selected variables include vaccination, population density, percentage of people that do not have health insurance, black race, Hispanic and these variables accounted for 68% of the number of COVID-19 cases in the state of Georgia during the study period. The study concludes that both COVID-19 cases and vaccinated individuals have spatial peculiarities across counties in Georgia state. Lastly, socio-economic variables and vaccination are very important to reduce the vulnerability of individuals to COVID-19 disease.展开更多
Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 a...Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 and 2020 to explore spatio-temporal patterns of aging population and its coupling correlations with socio-economic factors from both global and local perspectives.The results from Local Indicators of Spatial Association(LISA)uncover notable spatial disparities in aging population rates,with higher rates concentrated in the eastern regions and lower rates in the western areas of the Chinese mainland.The results from the global correlation analysis with the changes in aging population rates show significant positive correlations with government interventions and industrial structures,but negatively correlated with economic development,social consumption,and medical facilities.From a local perspective,a Geographically Weighted(GW)correlation analysis is employed to uncover local correlations between aging trends and socio-economic factors.The insights gained from this technique not only underscore the complexity and diversity of economic implications stemming from population aging,but also provide invaluable guidance for crafting region-specific economic policies tailored to various stages of population aging.展开更多
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation ...Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.展开更多
According to Statistical Yearbook of Jiangxi Province(2001~2006),We analyze the time-space variation of population distribution of Poyang Lake region from the two points of view.The former is quality of population,wh...According to Statistical Yearbook of Jiangxi Province(2001~2006),We analyze the time-space variation of population distribution of Poyang Lake region from the two points of view.The former is quality of population,which involves culture structure,occupational structure,age structure and sex structure of population.The latter is quantity of population,which only involves the amount of population.Furthermore,we can reveal the internal relations and action mechanism of variation of population distribution by analyzing the regional economic development,population urbanization,land use and ecological landscape of Poyang Lake region.It is important to provide help for region planning,ecological landscape planning and environmental protection by correct understanding the man-land relationship of natural-human ecosystem in Poyang Lake region.展开更多
We analyzed the fine-scale spatial genetic structure of the individuals of Zelkova schneideriana , which were classified by age using the spatial autocorrelation method, to quantify spatial patterns of genetic variati...We analyzed the fine-scale spatial genetic structure of the individuals of Zelkova schneideriana , which were classified by age using the spatial autocorrelation method, to quantify spatial patterns of genetic variation within the population and to explore potential mechanisms that determine genetic variation in population. The spatial autocorrelation coefficient ( r ) at 13 distance classes was determined on the basis of both geographical distance and genetic distance matrix which was derived from co-dominant SSR data using GenAlEx software. The results showed that all the individuals of Z. schneideriana exhibited significantly positive spatial genetic structure at distance less than 40 m (the X -intercept was 53.568), indicating that the average length of the smallest genetic patch for the same genotype clustering of the Z. schneideriana Mailing population was about 50 m. Limited seed dispersal is the main factor that leads to the spatial genetic variation within populations. The individuals in age Class II showed significantly positive spatial genetic structure at distance less than 30 m (the X -intercept was 47.882), while the individuals in age Class I and age Class III showed no significant spatial genetic structure in any of the spatial distance classes. Z. schneideriana is a long-lived perennial plant; the self-thinning resulted from the cohort competition between individuals in the growing process may lead to this certain spatial structure in age Class III of Z. schneideriana population.展开更多
The population spatial distribution pattern and its evolving pattern play an important role in regional allocation of social resources and production factors, formulation of regional development plans, construction of...The population spatial distribution pattern and its evolving pattern play an important role in regional allocation of social resources and production factors, formulation of regional development plans, construction of a better life society, and promotion of regional economic development. Based on the resident population statistics data of Henan province from 2006 to 2021, with county as the basic study unit, the paper studies the spatial morphology characteristics and its evolution patterns of resident population distribution, by using spatial analysis methods such as population distribution center, standard deviation ellipse, and spatial auto correlation analysis. The results show that: the resident population spatial distribution shows unbalanced state, the population agglomeration areas mainly distribute in the northeast part and north part, where the resident population growth rate is significantly higher than other regions, over time, this trend is gradually becoming significant. The resident population distribution has a trend of centripetal concentration, with the degree and trend of centripetal gradually strengthening. The resident population distribution has obvious directional characteristics, but the significance is not high, the weighted resident population average center is approximately located at (4.13740˚N, 113.8935˚E), and the azimuth of the distribution axis is approximately 11.19˚. The population distribution has obvious agglomeration characteristics, with the built-up areas of Zhengzhou and Luoyang as their centers, where have a significant siphon effect on the surrounding population. The southern and southwestern regions in the province form a relatively stable belt area of Low-Low agglomeration areas.展开更多
This study developed spatial Poisson model to incorporate spatial autocorrelation in crash frequency across contagious freeway segments. Spatial autocorrelation is the presence of spatial pattern in crash frequency ov...This study developed spatial Poisson model to incorporate spatial autocorrelation in crash frequency across contagious freeway segments. Spatial autocorrelation is the presence of spatial pattern in crash frequency over space due to geographic proximity. Usually crash caused congestion on a freeway segment propagates upstream and creates chance of occurring secondary crashes. This phenomenon makes the crash frequency on the contiguous freeway segments correlated. This correlation makes the distributional assumption of independence of crash frequency invalid. The existence of spatial autocorrelation is investigated by using Conditional autoregressive models (CAR models). The models are set up in a Bayesian modeling framework, to include terms which help to identify and quantify residual spatial autocorrelation for neighboring observation units. Models which recognize the presence of spatial dependence help to obtain unbiased estimates of parameters quantifying safety levels since the effects of spatial autocorrelation are accounted for in the modeling process. Based on CAR models, approximately 51% of crash frequencies across contiguous freeway segments are spatially auto-correlated. The incident rate ratios revealed that wider shoulder and weaving segments decreased crash frequency by factors of 0.84 and 0.75 respectively. The marginal impacts graphs showed that an increase in longitudinal space for segments with two lanes decreased crash frequency. However, an increase of facility width above three lanes results in more crashes, which indicates an increase in traffic flows and driving behavior leading to crashes. These results call an important step of analyzing contagious freeway segments simultaneously to account for the existence of spatial autocorrelation.展开更多
文摘In this analysis, natural systems are posed to subsystemize in a manner facilitating both structured information/energy sharing and an entropy maximization process projecting a three-dimensional, spatial outcome. Numerical simulations were first carried out to determine whether n × n input-output matrices could, once entropy-maximized, project a three-dimensional Euclidean metric. Only 4 × 4 matrices could;a small proportion passed the test. Larger proportions passed when grouped random patterns on and within two- and three-dimensional forms were tested. The pattern of structural zonation within the earth was then tested in analogous fashion using spatial autocorrelation measures, and for three time periods: current, 95 million years b.p. and 200 million years b.p. All expected results were obtained;not only do the geometries of zonation project a three-dimensional structure as anticipated, but also do secondary statistical measures reveal levels of equilibrium among the zones in all three cases that are nearly total, distinguishing them from simulations that do not incorporate a varying-surface zone-width element.
基金financially supported by the National Natural Science Foundation of China (41471365,41531179)
文摘Information on crop acreage is important for formulating national food polices and economic planning. Spatial sampling, a combination of traditional sampling methods and remote sensing and geographic information system (GIS) technology, provides an efficient way to estimate crop acreage at the regional scale. Traditional sampling methods require that the sampling units should be independent of each other, but in practice there is often spatial autocorrelation among crop acreage contained in the sampling units. In this study, using Dehui County in Jilin Province, China, as the study area, we used a thematic crop map derived from Systeme Probatoire d'Observation de la Terre (SPOT-5) imagery, cultivated land plots and digital elevation model data to explore the spatial autocorrelation characteristics among maize and rice acreage included in sampling units of different sizes, and analyzed the effects of different stratification criteria on the level of spatial autocorrelation of the two crop acreages within the sampling units. Moran's/, a global spatial autocorrelation index, was used to evaluate the spatial autocorrelation among the two crop acreages in this study. The results showed that although the spatial autocorrelation level among maize and rice acreages within the sampling units generally decreased with increasing sampling unit size, there was still a significant spatial autocorrelation among the two crop acreages included in the sampling units (Moran's / varied from 0.49 to 0.89), irrespective of the sampling unit size. When the sampling unit size was less than 3000 m, the stratification design that used crop planting intensity (CPI) as the stratification criterion, with a stratum number of 5 and a stratum interval of 20% decreased the spatial autocorrelation level to almost zero for the maize and rice area included in sampling units within each stratum. Therefore, the traditional sampling methods can be used to estimate the two crop acreages. Compared with CPI, there was still a strong spatial correlation among the two crop acreages included in the sampling units belonging to each stratum when cultivated land fragmentation and ground slope were used as stratification criterion. As far as the selection of stratification criteria and sampling unit size is concerned, this study provides a basis for formulating a reasonable spatial sampling scheme to estimate crop acreage.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371091), Land Monitoring Project ofthe Ministry of Land and Resources of P. R. China (No. 2005-6.1-6)
文摘This paper uses a spatial statistics method based on the calculation of spatial autocorrelation as a possible approach for modeling and quantifying the distribution of urban land price in Changzhou City, Jiangsu Province. GIS and spatial statistics provide a useful way for describing the distribution of urban land price both spatially and temporally, and have proved to be useful for understanding land price distribution pattern better. In this paper, we apply the statistical analysis method to 8379 urban land price samples collected from Changzhou Land Market, and it is turned out that the proposed approach can effectively identify the spatial clusters and local point patterns in dataset and forms a general method for conceptualizing the land price structure. The results show that land price structure in Changzhou City is very complex and that even where there is a high spatial autocorrelation, the land price is still relatively heterogeneous. Furthermore, lands for different uses have different degrees of spatial autocorrelation. Spatial autocorrelation of commercial lands is more intense than that of residential and industrial lands in regional central district. This means that treating land price as integration of homogeneous units can limit analysis of pattern, over-simplifying the structure of land price, but the methods, just as the autocorrelation approaches, are useful tools for quantifying the variables of land price.
基金supported by the National Natural Science Foundation for Distinguished Young Scholar of China (Grant No.40225004)
文摘Popular regional inequality indexes such as variation coefficient and Gini coefficient can only reveal overall inequality, and have limited ability in revealing spatial dependence or spatial agglomeration. Recently some methods of exploratory spatial data analysis such as spatial autocorrelation have provided effective tools to analyze spatial agglomeration and cluster, which can reveal the pattern of regional inequality. This article attempts to use spatial autocorrelation at county level to get refined spatial pattern of regional disparity in Chinese northeast economic region over 2000-2006 (2001 absent). The result indicates that the basic trend of regional economy is an increasing concentration of growth among counties in northeast economic region, and there are two geographical clusters of poorer counties including the counties in western Liaoning Province and adjacent counties in Inner Mongolia, poorer counties of Heihe, Qiqihar and Suihua in Heilongjiang Province. This article also reveals that we can use the methods of exploratory spatial data analysis as the supplementary analysis methods in regional economic analysis.
文摘Define and theory of autocorrelation decision tree (ADT) is introduced. In spatial data mining, spatial parallel query are very expensive operations. A new parallel algorithm in terms of autocorrelation decision tree is presented. And the new method reduces CPU- and I/O-time and improves the query efficiency of spatial data. For dynamic load balancing, there are better control and optimization. Experimental performance comparison shows that the improved algorithm can obtain a optimal accelerator with the same quantities of processors. There are more completely accesses on nodes. And an individual implement of intelligent information retrieval for spatial data mining is presented.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA092303)the Public Science and Technology Research Funds Projects of Ocean(No.20155014)+2 种基金the Shanghai Leading Academic Discipline Projectthe Funding Program for Outstanding Dissertation in Shanghai Ocean UniversitySupported by SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘Catch per unit of eff ort(CPUE) data can display spatial autocorrelation. However, most of the CPUE standardization methods developed so far assumes independency of observations for the dependent variable, which is often invalid. In this study, we collected data of two fisheries, squid jigging fishery and mackerel trawl fishery. We used standard generalized linear model(GLM) and spatial GLMs to compare the impact of spatial autocorrelation on CPUE standardization for different fisheries. We found that spatialGLMs perform better than standard-GLM for both fisheries. The overestimation of precision of CPUE estimates was observed in both fisheries. Moran's I was used to quantify the level of autocorrelation for the two fisheries. The results show that autocorrelation in mackerel trawl fishery was much stronger than that in squid jigging fishery. According to the results of this paper, we highly recommend to account for spatial autocorrelation when using GLM to standardize CPUE data derived from commercial fisheries.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371039)
文摘A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban population density. The new method and model are applied to Hangzhou City, China, as an example. The average distance of population activities, the auto-correlation coefficient of urban population density, and the auto-regressive function values all show trends of gradual increase from 1964 to 2000, but there always is a sharp first-order cutoff in the partial auto- correlations. These results indicate that urban development is a process of localization. The discovery of urban locality is significant to improve the cellular-automata-based urban simulation of modeling spatial complexity.
文摘Spatial autocorrelation methodologies, including Global Moran’s I and Local Indicators of Spatial Association statistic (LISA), were used to describe and map spatial clusters of 13 leading malignant neoplasms in Taiwan. A logistic regression fit model was also used to identify similar characteristics over time. Two time periods (1995-1998 and 2005-2008) were compared in an attempt to formulate common spatio-temporal risks. Spatial cluster patterns were identified using local spatial autocorrelation analysis. We found a significant spatio-temporal variation between the leading malignant neoplasms and well-documented spatial risk factors. For instance, in Taiwan, cancer of the oral cavity in males was found to be clustered in locations in central Taiwan, with distinct differences between the two time periods. Stomach cancer morbidity clustered in aboriginal townships, where the prevalence of Helicobacter pylori is high and even quite marked differences between the two time periods were found. A method which combines LISA statistics and logistic regression is an effective tool for the detection of space-time patterns with discontinuous data. Spatio-temporal mapping comparison helps to clarify issues such as the spatial aspects of both two time periods for leading malignant neoplasms. This helps planners to assess spatio-temporal risk factors, and to ascertain what would be the most advantageous types of health care policies for the planning and implementation of health care services. These issues can greatly affect the performance and effectiveness of health care services and also provide a clear outline for helping us to better understand the results in depth.
文摘Spatial autocorrelation is a measure of the correlation of an observation with other observations through space. Most statistical analyses are based on the assumption that the values of observations are independent of one another. Spatial autocorrelation violates this assumption, because observations at near-by locations are related to each other, and hence, the consideration of spatial autocorrelations has been gaining attention in crash data modeling in recent years, and research have shown that ignoring this factor may lead to a biased estimation of the modeling parameters. This paper examines two spatial autocorrelation indices: Moran’s Index;and Getis-Ord Gi* statistic to measure the spatial autocorrelation of vehicle crashes occurred in Boone County roads in the state of Missouri, USA for the years 2013-2015. Since each index can identify different clustering patterns of crashes, therefore this paper introduces a new hybrid method to identify the crash clustering patterns by combining both Moran’s Index and Gi*?statistic. Results show that the new method can effectively improve the number, extent, and type of crash clustering along roadways.
文摘Identifying vehicular crash high risk locations along highways is important for understanding the causes of vehicle crashes and to determine effective countermeasures based on the analysis. This paper presents a GIS approach to examine the spatial patterns of vehicle crashes and determines if they are spatially clustered, dispersed, or random. Moran’s I and Getis-Ord Gi* statistic are employed to examine spatial patterns, clusters mapping of vehicle crash data, and to generate high risk locations along highways. Kernel Density Estimation (KDE) is used to generate crash concentration maps that show the road density of crashes. The proposed approach is evaluated using the 2013 vehicle crash data in the state of Indiana. Results show that the approach is efficient and reliable in identifying vehicle crash hot spots and unsafe road locations.
文摘Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to identify not only the location of such hotspots, but also their spatial patterns. We used spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters and areas in which nine malignant neoplasms are situated in Taiwan. In addition, we used a logistic regression model to test the characteristics of similarity and dissimilarity between males and females and to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis was used to identify spatial cluster patterns. We found a significant relationship between the leading malignant neoplasms and well-documented spatial risk factors. For instance, in Taiwan, the geographic distribution of clusters where oral cavity cancer in males is prevalent was closely correspond to the locations in central Taiwan with serious metal pollution. In females, clusters of oral cavity cancer were closely related with aboriginal townships in eastern Taiwan, where cigarette smoking, alcohol drinking, and betel nut chewing are commonplace. The difference between males and females in the spatial distributions was stark. Furthermore, areas with a high morbidity of gastric cancer were clustered in aboriginal townships where the occurrence of Helicobacter pylori is frequent. Our results revealed a similarity between both males and females in spatial pattern. Cluster mapping clarified the spatial aspects of both internal and external correlations for the nine malignant neoplasms. In addition, using a method of logistic regression also enabled us to find differentiation between gender-specific spatial patterns.
基金funded by the by the Youth Program of the National Natural Science Foundation of China(Grants No.42001243,and 42201311)the Humanities and Social Science Project of the Ministry of Education,China(Grants No.20YJC630212,and 22YJCZH071)+1 种基金the Youth Program of the Natural Science Foundation of Shandong Province,China(Grants No.ZR2020QD008)Frontier Science Research Support Program,Management College,OUC(Grants No.MCQYZD2305,and MCQYYB2309).
文摘Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.
文摘This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in the state of Georgia. Data on COVID-19 was acquired from usafact.org while the vaccination records were obtained from COVID-19 vaccination tracker. The spatial patterns across the counties were analyzed using spatial statistical techniques which include both global and local spatial autocorrelation. The study further evaluates the effect of vaccination and selected socio-economic predictors on COVID-19 cases across the study area. The result of hotspot analysis reveals that the epicenters of COVID-19 are distributed across Cobb, Fulton, Gwinnett, and DeKalb counties. It was also affirmed that the vaccination records followed the same pattern as COVID-19 cases’ epicenters. The result of the spatial error model performed well and accounted for a considerable percentage of the regression with an adjusted R squared of 0.68, Akaike Information Criterion (AIC) 387.682 and Breusch-Pagan of 9.8091. ESDA was employed to select the main explanatory variables. The selected variables include vaccination, population density, percentage of people that do not have health insurance, black race, Hispanic and these variables accounted for 68% of the number of COVID-19 cases in the state of Georgia during the study period. The study concludes that both COVID-19 cases and vaccinated individuals have spatial peculiarities across counties in Georgia state. Lastly, socio-economic variables and vaccination are very important to reduce the vulnerability of individuals to COVID-19 disease.
基金National Natural Science Foundation of China(No.42071368)Fundamental Research Funds for the Central Universities(Nos.2042022dx0001,2042024kf0005).
文摘Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 and 2020 to explore spatio-temporal patterns of aging population and its coupling correlations with socio-economic factors from both global and local perspectives.The results from Local Indicators of Spatial Association(LISA)uncover notable spatial disparities in aging population rates,with higher rates concentrated in the eastern regions and lower rates in the western areas of the Chinese mainland.The results from the global correlation analysis with the changes in aging population rates show significant positive correlations with government interventions and industrial structures,but negatively correlated with economic development,social consumption,and medical facilities.From a local perspective,a Geographically Weighted(GW)correlation analysis is employed to uncover local correlations between aging trends and socio-economic factors.The insights gained from this technique not only underscore the complexity and diversity of economic implications stemming from population aging,but also provide invaluable guidance for crafting region-specific economic policies tailored to various stages of population aging.
文摘Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
文摘According to Statistical Yearbook of Jiangxi Province(2001~2006),We analyze the time-space variation of population distribution of Poyang Lake region from the two points of view.The former is quality of population,which involves culture structure,occupational structure,age structure and sex structure of population.The latter is quantity of population,which only involves the amount of population.Furthermore,we can reveal the internal relations and action mechanism of variation of population distribution by analyzing the regional economic development,population urbanization,land use and ecological landscape of Poyang Lake region.It is important to provide help for region planning,ecological landscape planning and environmental protection by correct understanding the man-land relationship of natural-human ecosystem in Poyang Lake region.
基金Supported by the Scientific Research and Technological Development Project of Guangxi(1598025-42)the Guangxi Youth Fund Project(2013GXNSFBA019093)+1 种基金the National Forestry Public Welfare Industry Research Project(200904011)the Open Project for Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation(15-B-03-01)
文摘We analyzed the fine-scale spatial genetic structure of the individuals of Zelkova schneideriana , which were classified by age using the spatial autocorrelation method, to quantify spatial patterns of genetic variation within the population and to explore potential mechanisms that determine genetic variation in population. The spatial autocorrelation coefficient ( r ) at 13 distance classes was determined on the basis of both geographical distance and genetic distance matrix which was derived from co-dominant SSR data using GenAlEx software. The results showed that all the individuals of Z. schneideriana exhibited significantly positive spatial genetic structure at distance less than 40 m (the X -intercept was 53.568), indicating that the average length of the smallest genetic patch for the same genotype clustering of the Z. schneideriana Mailing population was about 50 m. Limited seed dispersal is the main factor that leads to the spatial genetic variation within populations. The individuals in age Class II showed significantly positive spatial genetic structure at distance less than 30 m (the X -intercept was 47.882), while the individuals in age Class I and age Class III showed no significant spatial genetic structure in any of the spatial distance classes. Z. schneideriana is a long-lived perennial plant; the self-thinning resulted from the cohort competition between individuals in the growing process may lead to this certain spatial structure in age Class III of Z. schneideriana population.
文摘The population spatial distribution pattern and its evolving pattern play an important role in regional allocation of social resources and production factors, formulation of regional development plans, construction of a better life society, and promotion of regional economic development. Based on the resident population statistics data of Henan province from 2006 to 2021, with county as the basic study unit, the paper studies the spatial morphology characteristics and its evolution patterns of resident population distribution, by using spatial analysis methods such as population distribution center, standard deviation ellipse, and spatial auto correlation analysis. The results show that: the resident population spatial distribution shows unbalanced state, the population agglomeration areas mainly distribute in the northeast part and north part, where the resident population growth rate is significantly higher than other regions, over time, this trend is gradually becoming significant. The resident population distribution has a trend of centripetal concentration, with the degree and trend of centripetal gradually strengthening. The resident population distribution has obvious directional characteristics, but the significance is not high, the weighted resident population average center is approximately located at (4.13740˚N, 113.8935˚E), and the azimuth of the distribution axis is approximately 11.19˚. The population distribution has obvious agglomeration characteristics, with the built-up areas of Zhengzhou and Luoyang as their centers, where have a significant siphon effect on the surrounding population. The southern and southwestern regions in the province form a relatively stable belt area of Low-Low agglomeration areas.
文摘This study developed spatial Poisson model to incorporate spatial autocorrelation in crash frequency across contagious freeway segments. Spatial autocorrelation is the presence of spatial pattern in crash frequency over space due to geographic proximity. Usually crash caused congestion on a freeway segment propagates upstream and creates chance of occurring secondary crashes. This phenomenon makes the crash frequency on the contiguous freeway segments correlated. This correlation makes the distributional assumption of independence of crash frequency invalid. The existence of spatial autocorrelation is investigated by using Conditional autoregressive models (CAR models). The models are set up in a Bayesian modeling framework, to include terms which help to identify and quantify residual spatial autocorrelation for neighboring observation units. Models which recognize the presence of spatial dependence help to obtain unbiased estimates of parameters quantifying safety levels since the effects of spatial autocorrelation are accounted for in the modeling process. Based on CAR models, approximately 51% of crash frequencies across contiguous freeway segments are spatially auto-correlated. The incident rate ratios revealed that wider shoulder and weaving segments decreased crash frequency by factors of 0.84 and 0.75 respectively. The marginal impacts graphs showed that an increase in longitudinal space for segments with two lanes decreased crash frequency. However, an increase of facility width above three lanes results in more crashes, which indicates an increase in traffic flows and driving behavior leading to crashes. These results call an important step of analyzing contagious freeway segments simultaneously to account for the existence of spatial autocorrelation.