While significant progress has been made to implement the Digital Earth vision,current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to int...While significant progress has been made to implement the Digital Earth vision,current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to integrate data and models for simulating social and physical processes.To achieve effectiveness of decisionmaking using Digital Earth for understanding the Earth and its systems,new infrastructures that provide capabilities of computational simulation are needed.This paper proposed a framework of geospatial semantic web-based interoperable spatial decision support systems(SDSSs)to expand capabilities of the currently implemented infrastructure of Digital Earth.Main technologies applied in the framework such as heterogeneous ontology integration,ontology-based catalog service,and web service composition were introduced.We proposed a partitionrefinement algorithm for ontology matching and integration,and an algorithm for web service discovery and composition.The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing resources from heterogeneous sources across the Internet.Based on the proposed framework,a prototype to assist in protective boundary delimitation for Lunan Stone Forest conservation was implemented to demonstrate how ontology-based web services and the services-oriented architecture can contribute to the development of interoperable SDSSs in support of Digital Earth for decision-making.展开更多
Multi-criteria spatial modeling is one of the important components of spatial decision support system (SDSS). Multi-criteria spatial modeling often requires a common scale of values for diverse and dissimilar inputs t...Multi-criteria spatial modeling is one of the important components of spatial decision support system (SDSS). Multi-criteria spatial modeling often requires a common scale of values for diverse and dissimilar inputs to create an integrated analysis. Weighted overlay function is most commonly used for site suitability analysis which identifies the most preferred locations for a specific phenomenon. However, weighted overlay function gives inconsistent and erroneous results for highly dissimilar inputs as it assumes that most favorable factors result in the higher values of raster, while identifying the best sites. This paper conveys the effectiveness of fuzzy overlay function for multi-criteria spatial modeling. It is based on the principle of fuzzy logic theory which defines membership using Gaussian function on each of the input rasters instead of giving individual rank to them like in weighted overlay function. A case study on preparation of land resources map for Mawsynram block of East Khasi Hills district of Meghalaya, India is presented here. It was observed that fuzzy overlay function has given more satisfactory output in terms of site suitability while comparing with the result of weighted overlay function.展开更多
Searching for a property is inherently a multicriteria spatial decision.The decision is primarily based on three high-level criteria composed of household needs,building facilities,and location characteristics.Locatio...Searching for a property is inherently a multicriteria spatial decision.The decision is primarily based on three high-level criteria composed of household needs,building facilities,and location characteristics.Location choice is driven by diverse characteristics;including but not limited to environmental factors,access,services,and the socioeconomic status of a neighbourhood.This article aims to identify the gap between theory and practice in presenting information on location choice by using a gap analysis methodology through the development of a sevenfactor classification tool and an assessment of international property websites.Despite the availability of digital earth data,the results suggest that real-estate websites are poor at providing sufficient location information to support efficient spatial decision making.Based on a case study in Dublin,Ireland,we find that although neighbourhood digital earth data may be readily available to support decision making,the gap persists.We hypothesise that the reason is two-fold.Firstly,there is a technical challenge to transform location data into usable information.Secondly,the market may not wish to provide location information which can be perceived as negative.We conclude this article with a discussion of critical issues necessary for designing a spatial decision support system for real-estate decision making.展开更多
文摘While significant progress has been made to implement the Digital Earth vision,current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to integrate data and models for simulating social and physical processes.To achieve effectiveness of decisionmaking using Digital Earth for understanding the Earth and its systems,new infrastructures that provide capabilities of computational simulation are needed.This paper proposed a framework of geospatial semantic web-based interoperable spatial decision support systems(SDSSs)to expand capabilities of the currently implemented infrastructure of Digital Earth.Main technologies applied in the framework such as heterogeneous ontology integration,ontology-based catalog service,and web service composition were introduced.We proposed a partitionrefinement algorithm for ontology matching and integration,and an algorithm for web service discovery and composition.The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing resources from heterogeneous sources across the Internet.Based on the proposed framework,a prototype to assist in protective boundary delimitation for Lunan Stone Forest conservation was implemented to demonstrate how ontology-based web services and the services-oriented architecture can contribute to the development of interoperable SDSSs in support of Digital Earth for decision-making.
文摘Multi-criteria spatial modeling is one of the important components of spatial decision support system (SDSS). Multi-criteria spatial modeling often requires a common scale of values for diverse and dissimilar inputs to create an integrated analysis. Weighted overlay function is most commonly used for site suitability analysis which identifies the most preferred locations for a specific phenomenon. However, weighted overlay function gives inconsistent and erroneous results for highly dissimilar inputs as it assumes that most favorable factors result in the higher values of raster, while identifying the best sites. This paper conveys the effectiveness of fuzzy overlay function for multi-criteria spatial modeling. It is based on the principle of fuzzy logic theory which defines membership using Gaussian function on each of the input rasters instead of giving individual rank to them like in weighted overlay function. A case study on preparation of land resources map for Mawsynram block of East Khasi Hills district of Meghalaya, India is presented here. It was observed that fuzzy overlay function has given more satisfactory output in terms of site suitability while comparing with the result of weighted overlay function.
基金Hamidreza Rabiei-Dastjerdi is a Marie Skłodowska-Curie Career-FIT Fellow at the UCD School of Computer Science and CeADAR(Ireland’s National Centre for Applied Data Analytics&AI)Career-FIT has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.713654.
文摘Searching for a property is inherently a multicriteria spatial decision.The decision is primarily based on three high-level criteria composed of household needs,building facilities,and location characteristics.Location choice is driven by diverse characteristics;including but not limited to environmental factors,access,services,and the socioeconomic status of a neighbourhood.This article aims to identify the gap between theory and practice in presenting information on location choice by using a gap analysis methodology through the development of a sevenfactor classification tool and an assessment of international property websites.Despite the availability of digital earth data,the results suggest that real-estate websites are poor at providing sufficient location information to support efficient spatial decision making.Based on a case study in Dublin,Ireland,we find that although neighbourhood digital earth data may be readily available to support decision making,the gap persists.We hypothesise that the reason is two-fold.Firstly,there is a technical challenge to transform location data into usable information.Secondly,the market may not wish to provide location information which can be perceived as negative.We conclude this article with a discussion of critical issues necessary for designing a spatial decision support system for real-estate decision making.