Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects...Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects and fish,research on large animals is still rare due to the limited availability of field collective data.We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orienta-tion of Kiang(Tibetan wild ass,Equus kiang).Leadership is unevenly distributed among Kiang,with the minority initiating majority behavior-shift decisions.Decisions of individual to join are driven by imitation between group members,and are largely dependent on the number of members who have already joined.Kiang respond to the behavior and position of neighbors through different strategies.They strongly polarize when moving,therefore adopting a linear alignment.When vigilant,orientation deviation increases as they form a tighter group.They remain scattered while feeding and,in that context,adopt a side-by-side alignment.This study reveals partially-shared decision-making among Kiang,whereby copying neighbors provides the wisdom to thrive in harsh conditions.This study also suggests that animals'spatial patterns in orientation depend largely ontheirbehavioral states inachieving synchronization.展开更多
Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two dou...Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two double-layer cylindrical shells and one spherical shell constructed for the 2008 Olympic Games in Beijing, were quantitatively examined under multi-support excitation (MSE) and uniform support excitation (USE). In the numerical analyses, several important parameters were investigated such as the peak acceleration and displacement responses at key joints, the number and distribution of plastic members, and the deformation of the shell at the moment of collapse. Analysis results reveal the features and the failure mechanism of the spatial latticed structures under MSE and USE. In both scenarios, the double-layer reticulated shell collapses in the "overflow" mode, and the collapse is governed by the number of invalid plastic members rather than the total number of plastic members, beginning with damage to some of the local regions near the supports. By comparing the numbers and distributions of the plastic members under MSE to those under USE, it was observed that the plastic members spread more sufficiently and the internal forces are more uniform under MSE, especially in cases of lower apparent velocities in soils. Due to the effects of pseudo-static displacement, the stresses in the members near the supports under MSE are higher than those under USE.展开更多
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio...In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.展开更多
Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious d...Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
The basic mathematic models, such as the statistic model, the time\|serial model, the spatial dynamic model etc., and some typical analysis methods based on 3DCM are proposed and discussed. A few typical spatial decis...The basic mathematic models, such as the statistic model, the time\|serial model, the spatial dynamic model etc., and some typical analysis methods based on 3DCM are proposed and discussed. A few typical spatial decision making methods integrating the spatial analysis and the basic mathematical models are also introduced, e.g. visual impact assessment, dispersion of noise immissions, base station plan for wireless communication. In addition, a new idea of expectation of further applications and add\|in\|value service of 3DCM is promoted. As an example, the sunshine analysis is studied and some helpful conclusions are drawn.展开更多
In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatia...In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatial data warehouse technique based on the SOLAP spatial analysis tool. After having defined the concepts underlying these systems, we propose to address the research issues related to them from four points of view: needs study of the Malagasy Ministry of Agriculture, modeling of a multidimensional conceptual model according to the MultiDim model and the implementation of the system studied using GeoKettle, PostGIS, GeoServer, SPAGO BI and Géomondrian technologies. This new system helps improve the decision-making process for agricultural production in Madagascar.展开更多
Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. I...Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. Integrated coastal zone management therefore requires detailed knowledge of the system and its components, based—to a large extent—on technical and scientific information. However, the information generated must be in line with the political requirements necessary for decision-making and planning. Thus the use of indicators to give a simplified view of the many components of the territory, and at the same time to provide important information about patterns or trends, becomes a tool of the utmost importance. These indicators can be understood as measurable characteristics of the environment, which facilitate comprehension of the processes occurring at different scales and serve as a reference to inform the population and support decision-making. The aim of the present note is to demonstrate briefly the need to develop geographical-environmental and natural risk indicators to facilitate comprehension of the dynamic of spatial and temporal landscape patterns, particularly in coastal environments. This approach offers an historical summary of the natural, socio-economic and political processes which currently make up the territory, and which without doubt will continue to influence it in the future. At the same time, it is proposed that information should be integrated on the basis of this framework with a view to generating spatial decision support systems in a context of planning and integrated management of the coastal zones of Chile.展开更多
基金supported by Tibet Major Science and Technology Project(XZ201901-GA-06)National Natural Science Foundation of China(32101237&41871294)National key research and development program(2022YFC3202104).
文摘Group living animals form striking aggregation patterns and display synchronization,polarization,and collective intelligence.Though many col-lective behavioral studies have been conducted on small animals like insects and fish,research on large animals is still rare due to the limited availability of field collective data.We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orienta-tion of Kiang(Tibetan wild ass,Equus kiang).Leadership is unevenly distributed among Kiang,with the minority initiating majority behavior-shift decisions.Decisions of individual to join are driven by imitation between group members,and are largely dependent on the number of members who have already joined.Kiang respond to the behavior and position of neighbors through different strategies.They strongly polarize when moving,therefore adopting a linear alignment.When vigilant,orientation deviation increases as they form a tighter group.They remain scattered while feeding and,in that context,adopt a side-by-side alignment.This study reveals partially-shared decision-making among Kiang,whereby copying neighbors provides the wisdom to thrive in harsh conditions.This study also suggests that animals'spatial patterns in orientation depend largely ontheirbehavioral states inachieving synchronization.
文摘Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two double-layer cylindrical shells and one spherical shell constructed for the 2008 Olympic Games in Beijing, were quantitatively examined under multi-support excitation (MSE) and uniform support excitation (USE). In the numerical analyses, several important parameters were investigated such as the peak acceleration and displacement responses at key joints, the number and distribution of plastic members, and the deformation of the shell at the moment of collapse. Analysis results reveal the features and the failure mechanism of the spatial latticed structures under MSE and USE. In both scenarios, the double-layer reticulated shell collapses in the "overflow" mode, and the collapse is governed by the number of invalid plastic members rather than the total number of plastic members, beginning with damage to some of the local regions near the supports. By comparing the numbers and distributions of the plastic members under MSE to those under USE, it was observed that the plastic members spread more sufficiently and the internal forces are more uniform under MSE, especially in cases of lower apparent velocities in soils. Due to the effects of pseudo-static displacement, the stresses in the members near the supports under MSE are higher than those under USE.
基金supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)Project of Environmental Business Big Data Platform and Center Construction funded by the Ministry of Science and ICT。
文摘In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.
基金Supported by the Sci & Tech Development Foundation of Shaanxi province(2003K10G61)
文摘Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
文摘The basic mathematic models, such as the statistic model, the time\|serial model, the spatial dynamic model etc., and some typical analysis methods based on 3DCM are proposed and discussed. A few typical spatial decision making methods integrating the spatial analysis and the basic mathematical models are also introduced, e.g. visual impact assessment, dispersion of noise immissions, base station plan for wireless communication. In addition, a new idea of expectation of further applications and add\|in\|value service of 3DCM is promoted. As an example, the sunshine analysis is studied and some helpful conclusions are drawn.
文摘In this article, our research aims to set up a geo-decisional system, more precisely we are particularly interested in the spatial analysis system of agricultural production in Madagascar. For this, we used the spatial data warehouse technique based on the SOLAP spatial analysis tool. After having defined the concepts underlying these systems, we propose to address the research issues related to them from four points of view: needs study of the Malagasy Ministry of Agriculture, modeling of a multidimensional conceptual model according to the MultiDim model and the implementation of the system studied using GeoKettle, PostGIS, GeoServer, SPAGO BI and Géomondrian technologies. This new system helps improve the decision-making process for agricultural production in Madagascar.
基金support provided by Co-mision Nacional de Investigacion Cientifica y Tecnologica(CONICYT),through FONDECYT project 1110 798:“Determinacion de indicadores geograficoambien-tales y de riesgo natural en el paisaje de La Araucania y Los Rios:Herramientas de soporte decisional para la planificacion y gestion territorial en sistemas costeros”.
文摘Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. Integrated coastal zone management therefore requires detailed knowledge of the system and its components, based—to a large extent—on technical and scientific information. However, the information generated must be in line with the political requirements necessary for decision-making and planning. Thus the use of indicators to give a simplified view of the many components of the territory, and at the same time to provide important information about patterns or trends, becomes a tool of the utmost importance. These indicators can be understood as measurable characteristics of the environment, which facilitate comprehension of the processes occurring at different scales and serve as a reference to inform the population and support decision-making. The aim of the present note is to demonstrate briefly the need to develop geographical-environmental and natural risk indicators to facilitate comprehension of the dynamic of spatial and temporal landscape patterns, particularly in coastal environments. This approach offers an historical summary of the natural, socio-economic and political processes which currently make up the territory, and which without doubt will continue to influence it in the future. At the same time, it is proposed that information should be integrated on the basis of this framework with a view to generating spatial decision support systems in a context of planning and integrated management of the coastal zones of Chile.