The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement sp...This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.展开更多
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ...Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.展开更多
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospher...This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.展开更多
This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum...This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.展开更多
Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cove...Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cover and the associated drivers. The conventional regression model can only analyze the correlation between land use types and driving factors but cannot depict the spatial autocorrelation characteristics. Land uses in Yongding County, which is located in the typical karst mountain areas in northwestern Hunan province, were investigated by means of modeling the spatial autocorrelation of land use types with the purpose of deriving better spatial land use patterns on the basis of terrain characteristics and infrastructural conditions. Through incorporating components describing the spatial autocorrelation into a conventional logistic model, we constructed a regression model (Autologistic model), and used this model to simulate and analyze the spatial land use patterns in Yongding County. According to the comparison with the conventional logistic model without considering the spatial autocorrelation, this model showed better goodness and higher accuracy of fitting. The distribution of arable land, wood land, built-up land and unused land yielded areas under the ROC curves (AUC) was improved to 0.893, 0.940, 0.907 and 0.863 respectively with the autologistic model. It is argued that the improved model based on autologistic method was reasonable to a certain extent. Meanwhile, these analysis results could provide valuable information for modeling future land use change scenarios with actual conditions of local and regional land use, and the probability maps of land use types obtained from this study could also support government decision-making on land use management for Yongding County and other similar areas.展开更多
In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the...In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including(1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution,(2) the lack of consideration of spatial variability of roughness in hydrological models, and(3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems,distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems.展开更多
With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control ...With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.展开更多
This paper presents a new perspective on the nature of destination competition in spatial interaction models. The concept of destinations competing with one another on the basis of their spatial proximity to each othe...This paper presents a new perspective on the nature of destination competition in spatial interaction models. The concept of destinations competing with one another on the basis of their spatial proximity to each other is compared with an alternative point of view which argues that competition takes place on the basis of similarities in the spatial influences of competing destinations on decision makers at origins. Potential movers at an origin are facing a set of destinations which compete for their attention. This paper argues that the movers' choices are conditioned by the relative size and number of influences they see (where influence is directly proportional to destination size and inversely proportional to distance). A small amount of supporting empirical evidence concerning recreational day trips, and population migration, is presented.展开更多
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com...Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.展开更多
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ...The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.展开更多
Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon sto...Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year(t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.展开更多
In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structur...In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structure based on weighted Voronoi diagrams is proposed.In particular,we provide a novel methodological model for the comprehensive evaluation of the spatial structure of forest stands in natural mixed conifer-broadleaved forests and the formulation of management decision plans.The applicability of the rank evaluation and the optimal solution distance model are compared and assessed for different standard sample plots of natural mixed conifer-broadleaved forests.The effect of crown width on the spatial structure unit of the trees is observed to be higher than that of the diameter at breast height.Moreover,the influence of crown length is greater than that of tree height.There are nine possible spatial structure units determined by the weighted Voronoi diagram for the number of neighboring trees in the central tree,with an average intersection of neighboring crowns reaching 80%.The rank rating of natural forest sample plots is correlated with the optimal solution distance model,and their results are generally consistent for natural forests.However,the rank rating is not able to provide a quantitative assessment.The optimal solution distance model is observed to be more comprehensive than traditional methods for the evaluation of the spatial structure of forest stands.It can effectively reflect the trends in realistic stand spatial structure factors close to or far from the ideal structure point,and accurately assesses the forest spatial structure.The proposed optimal solution distance model improves the integrated evaluation of the spatial structure of forest stands and provides solid theoretical and technical support for sustainable forest management.展开更多
The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far ap...The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far apart in space. This property is ignored in machine learning (ML) for spatial domains of application. Most classical machine learning algorithms are generally inappropriate unless modified in some way to account for it. In this study, we proposed an approach that aimed to improve a ML model to detect the dependence without incorporating any spatial features in the learning process. To detect this dependence while also improving performance, a hybrid model was used based on two representative algorithms. In addition, cross-validation method was used to make the model stable. Furthermore, global moran’s I and local moran were used to capture the spatial dependence in the residuals. The results show that the HM has significant with a R2 of 99.91% performance compared to RBFNN and RF that have 74.22% and 82.26% as R2 respectively. With lower errors, the HM was able to achieve an average test error of 0.033% and a positive global moran’s of 0.12. We concluded that as the R2 value increases, the models become weaker in terms of capturing the dependence.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u...A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importanc...Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
文摘This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.
文摘Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
基金supported by the National Natural Science Foundation of China(Grant No.42230608)the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘This paper provides a systematic evaluation of the ability of 12 Earth System Models(ESMs)participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)to simulate the spatial inhomogeneity of the atmospheric carbon dioxide(CO_(2))concentration.The multi-model ensemble mean(MME)can reasonably simulate the increasing trend of CO_(2) concentration from 1850 to 2014,compared with the observation data from the Scripps CO_(2) Program and CMIP6 prescribed data,and improves upon the CMIP5 MME CO_(2) concentration(which is overestimated after 1950).The growth rate of CO_(2) concentration in the northern hemisphere(NH)is higher than that in the southern hemisphere(SH),with the highest growth rate in the mid-latitudes of the NH.The MME can also reasonably simulate the seasonal amplitude of CO_(2) concentration,which is larger in the NH than in the SH and grows in amplitude after the 1950s(especially in the NH).Although the results of the MME are reasonable,there is a large spread among ESMs,and the difference between the ESMs increases with time.The MME results show that regions with relatively large CO_(2) concentrations(such as northern Russia,eastern China,Southeast Asia,the eastern United States,northern South America,and southern Africa)have greater seasonal variability and also exhibit a larger inter-model spread.Compared with CMIP5,the CMIP6 MME simulates an average spatial distribution of CO_(2) concentration that is much closer to the site observations,but the CMIP6-inter-model spread is larger.The inter-model differences of the annual means and seasonal cycles of atmospheric CO_(2) concentration are both attributed to the differences in natural sources and sinks of CO_(2) between the simulations.
基金financially supported by the research special fund of public service sector from the Ministry of Land and Resources (No. 201111008)
文摘This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.
基金National High Technology Research and Development Program of China, No.2008AA12Z106 National Natural Science Foundation of China, No.40801166 No.40771198
文摘Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cover and the associated drivers. The conventional regression model can only analyze the correlation between land use types and driving factors but cannot depict the spatial autocorrelation characteristics. Land uses in Yongding County, which is located in the typical karst mountain areas in northwestern Hunan province, were investigated by means of modeling the spatial autocorrelation of land use types with the purpose of deriving better spatial land use patterns on the basis of terrain characteristics and infrastructural conditions. Through incorporating components describing the spatial autocorrelation into a conventional logistic model, we constructed a regression model (Autologistic model), and used this model to simulate and analyze the spatial land use patterns in Yongding County. According to the comparison with the conventional logistic model without considering the spatial autocorrelation, this model showed better goodness and higher accuracy of fitting. The distribution of arable land, wood land, built-up land and unused land yielded areas under the ROC curves (AUC) was improved to 0.893, 0.940, 0.907 and 0.863 respectively with the autologistic model. It is argued that the improved model based on autologistic method was reasonable to a certain extent. Meanwhile, these analysis results could provide valuable information for modeling future land use change scenarios with actual conditions of local and regional land use, and the probability maps of land use types obtained from this study could also support government decision-making on land use management for Yongding County and other similar areas.
基金supported by the National Natural Science Foundation of China(Grants No.41471025 and 40971021)the Natural Science Foundation of Shandong Province(Grant No.ZR2014DM004)
文摘In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including(1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution,(2) the lack of consideration of spatial variability of roughness in hydrological models, and(3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems,distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems.
基金supported by the Humanities and Social Sciences Program of Jiangxi Universities(Grant No.GL21129)the Graduate Student Innovation Fund Program of Gannan Normal University(Grant No.YCX23A043)the Open Subject of Geography Discipline Construction of Gannan Normal University(Grant No.200084).
文摘With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.
文摘This paper presents a new perspective on the nature of destination competition in spatial interaction models. The concept of destinations competing with one another on the basis of their spatial proximity to each other is compared with an alternative point of view which argues that competition takes place on the basis of similarities in the spatial influences of competing destinations on decision makers at origins. Potential movers at an origin are facing a set of destinations which compete for their attention. This paper argues that the movers' choices are conditioned by the relative size and number of influences they see (where influence is directly proportional to destination size and inversely proportional to distance). A small amount of supporting empirical evidence concerning recreational day trips, and population migration, is presented.
基金Supported by National Natural Science Foundation of China (Grant No.51975369)National Key Science and Technology Research Program of China (Grant No.2019ZX04027001)。
文摘Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.
文摘The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.
基金conducted as part of the project ‘‘Pilot site:quantification and modelling of forest carbon stocks in Benin’’ funded by the Global Climate Change Alliance and the European Union(No.00009 CILSS/SE/UAM-AFC/2013)
文摘Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year(t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.
基金funded by National Key Research and development project(2022YFD2201001)。
文摘In order to ensure the effective analysis and reconstruction of forests,it is key to ensure the quantitative description of their spatial structure.In this paper,a distance model for the optimal stand spatial structure based on weighted Voronoi diagrams is proposed.In particular,we provide a novel methodological model for the comprehensive evaluation of the spatial structure of forest stands in natural mixed conifer-broadleaved forests and the formulation of management decision plans.The applicability of the rank evaluation and the optimal solution distance model are compared and assessed for different standard sample plots of natural mixed conifer-broadleaved forests.The effect of crown width on the spatial structure unit of the trees is observed to be higher than that of the diameter at breast height.Moreover,the influence of crown length is greater than that of tree height.There are nine possible spatial structure units determined by the weighted Voronoi diagram for the number of neighboring trees in the central tree,with an average intersection of neighboring crowns reaching 80%.The rank rating of natural forest sample plots is correlated with the optimal solution distance model,and their results are generally consistent for natural forests.However,the rank rating is not able to provide a quantitative assessment.The optimal solution distance model is observed to be more comprehensive than traditional methods for the evaluation of the spatial structure of forest stands.It can effectively reflect the trends in realistic stand spatial structure factors close to or far from the ideal structure point,and accurately assesses the forest spatial structure.The proposed optimal solution distance model improves the integrated evaluation of the spatial structure of forest stands and provides solid theoretical and technical support for sustainable forest management.
文摘The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far apart in space. This property is ignored in machine learning (ML) for spatial domains of application. Most classical machine learning algorithms are generally inappropriate unless modified in some way to account for it. In this study, we proposed an approach that aimed to improve a ML model to detect the dependence without incorporating any spatial features in the learning process. To detect this dependence while also improving performance, a hybrid model was used based on two representative algorithms. In addition, cross-validation method was used to make the model stable. Furthermore, global moran’s I and local moran were used to capture the spatial dependence in the residuals. The results show that the HM has significant with a R2 of 99.91% performance compared to RBFNN and RF that have 74.22% and 82.26% as R2 respectively. With lower errors, the HM was able to achieve an average test error of 0.033% and a positive global moran’s of 0.12. We concluded that as the R2 value increases, the models become weaker in terms of capturing the dependence.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51974082 and 52274377)the Fundamental Research Funds for the Central Universities(Grant No.N2209001)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,Grant No.BP0719037)。
文摘A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金financially supported by the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University,grant number:LYGC202117the China Scholarship Council(CSC),grant number:202306600046+1 种基金the Research and Development Plan of Applied Technology in Heilongjiang Province of China,grant number:GA19C006Research and Demonstration on Functional Improvement Technology of Forest Ecological Security Barrier in Heilongjiang Province,grant number:GA21C030。
文摘Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.