Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneuro...Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First...To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images.展开更多
Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spa...Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.展开更多
Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution r...Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.展开更多
With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,...With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
Traditional block of Xin’gan South Road in Ganzhou City is taken as the research object.Using urban design techniques,spatial structure,spatial interface,scale,ratio and spatial node of traditional streets and lanes ...Traditional block of Xin’gan South Road in Ganzhou City is taken as the research object.Using urban design techniques,spatial structure,spatial interface,scale,ratio and spatial node of traditional streets and lanes are controlled and processed,and spatial image is analyzed.Moreover,the strategic transformation proposal is put forward.It promotes the renewal of traditional streets and lanes in urban renewal,and realizes the historical continuation of spatial image of traditional streets and lanes,thereby protecting the historical features of the ancient city.展开更多
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu...The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.展开更多
From 1999, with the rapid expansion of enrollment scale, colleges have experienced fast development and construction of new campuses. However, the urgency of the demand for campus space at that time led to the shortco...From 1999, with the rapid expansion of enrollment scale, colleges have experienced fast development and construction of new campuses. However, the urgency of the demand for campus space at that time led to the shortcomings of paying more attention to speed than connotation during the construction of the new campus. Even now the evaluation of new campuses which have been used for nearly twenty years and whether the space of new campuses has played its due role will affect the display of the heritage and temperament of colleges. This paper uses the typical spatial cognitive concept—spatial image to analyse the elements of spatial images on campuses, summarizes the perceptions of teachers and students towards the space of four new campuses in Chengdu through questionnaire survey and analysis, puts forward the principles of campus space design and the strategies of classification design, and intends to take spatial images as the research cut-in point to provide new ideas and suggestions for the design and improvement of campus space from the perspective of users.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im...Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source ima...Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.展开更多
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
基金supported by the Chinese National General Program of the National Natural Science Foundation of China,No.82072162(to XY)。
文摘Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images.
基金supported by "the Twelfth Five-year Civil Aerospace Technologies Pre-Research Program"(D040201)
文摘Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.
基金supported by the National Natural Science Foundation of China(31670552)the PAPD(Priority Academic Program Development)of Jiangsu provincial universities and the China Postdoctoral Science Foundation funded projectthis work was performed while the corresponding author acted as an awardee of the 2017 Qinglan Project sponsored by Jiangsu Province。
文摘Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.
基金Under the auspices of Natural Science Foundation of China(No.42071342,31870713)Beijing Natural Science Foundation Program(No.8182038)Fundamental Research Funds for the Central Universities(No.2015ZCQ-LX-01,2018ZY06)。
文摘With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
文摘Traditional block of Xin’gan South Road in Ganzhou City is taken as the research object.Using urban design techniques,spatial structure,spatial interface,scale,ratio and spatial node of traditional streets and lanes are controlled and processed,and spatial image is analyzed.Moreover,the strategic transformation proposal is put forward.It promotes the renewal of traditional streets and lanes in urban renewal,and realizes the historical continuation of spatial image of traditional streets and lanes,thereby protecting the historical features of the ancient city.
基金supported by a grant from the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (Grant No. GZZKFJJ2020004)the National Natural Science Foundation of China (Grant Nos. 61875013 and 61827814)the Natural Science Foundation of Beijing Municipality (Grant No. Z190018)。
文摘The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.
基金Sponsored by Technology Research Program of Sichuan Province of China(2016JY0111)
文摘From 1999, with the rapid expansion of enrollment scale, colleges have experienced fast development and construction of new campuses. However, the urgency of the demand for campus space at that time led to the shortcomings of paying more attention to speed than connotation during the construction of the new campus. Even now the evaluation of new campuses which have been used for nearly twenty years and whether the space of new campuses has played its due role will affect the display of the heritage and temperament of colleges. This paper uses the typical spatial cognitive concept—spatial image to analyse the elements of spatial images on campuses, summarizes the perceptions of teachers and students towards the space of four new campuses in Chengdu through questionnaire survey and analysis, puts forward the principles of campus space design and the strategies of classification design, and intends to take spatial images as the research cut-in point to provide new ideas and suggestions for the design and improvement of campus space from the perspective of users.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
基金supported by the National Natural Science Foundation of China(6087403160740430664)
文摘Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
文摘Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.