Neighborhood socioeconomic deprivation has been associated with health behaviors and outcomes. However, neighborhood socioeconomic status has been measured inconsistently across studies. It remains unclear whether app...Neighborhood socioeconomic deprivation has been associated with health behaviors and outcomes. However, neighborhood socioeconomic status has been measured inconsistently across studies. It remains unclear whether appropriate socioeconomic indicators vary over geographic areas and geographic levels. The aim of this study is to compare the composite socioeconomic index to six socioeconomic indicators reflecting different aspects of socioeconomic environment by both geographic areas and levels. Using 2000 U.S. Census data, we performed a multivariate common factor analysis to identify significant socioeconomic resources and constructed 12 composite indexes at the county, the census tract, and the block group levels across the nation and for three states, respectively. We assessed the agreement between composite indexes and single socioeconomic variables. The component of the composite index varied across geographic areas. At a specific geographic region, the component of the composite index was similar at the levels of census tracts and block groups but different from that at the county level. The percentage of population below federal poverty line was a significant contributor to the composite index, regardless of geographic areas and levels. Compared with non-component socioeconomic indicators, component variables were more agreeable to the composite index. Based on these findings, we conclude that a composite index is better as a measure of neighborhood socioeconomic deprivation than a single indicator, and it should be constructed on an area- and unit-specific basis to accurately identify and quantify small-area socioeconomic inequalities over a specific study region.展开更多
Despite growing research for residential crowding effects on housing market and public health perspectives, relatively little attention has been paid to explore and model spatial patterns of residential crowding over ...Despite growing research for residential crowding effects on housing market and public health perspectives, relatively little attention has been paid to explore and model spatial patterns of residential crowding over space. This paper focuses upon analyzing the spatial relationships between residential crowding and socio-demographic variables in Alexandria neighborhoods, Egypt. Global and local geo-statistical techniques were employed within GIS-based platform to identify spatial?variations of residential crowding determinates. The global ordinary least squares (OLS) model?assumes homogeneity of relationships between response variable and explanatory variables?across the study area. Consequently, it fails to account for heterogeneity of spatial relationships. Local model known as a geographically weighted regression (GWR) was also employed using the same?response variable and explanatory variables to capture spatial non-stationary of residential?crowding. A comparison of the outputs of both models indicated that OLS explained 74 percent of?residential crowding variations while GWR model explained 79 percent. The GWR improvedstrength of the model and provided a better goodness of fit than OLS. In addition, the findings of this analysis revealed that residential crowding was significantly associated with different structural measures particularly social characteristics of household such as higher education and illiteracy. Similarly, population size of neighborhood and number of dwelling rooms were found to have direct impacts on residential crowding rate. The spatial relationship of these measures distinctly varies over the study area.展开更多
Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities glob-ally. Typically...Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities glob-ally. Typically these provide at best a few recording locations per city. However, large spatial var-iability occurs on the neighborhood scale. This study sets out to comprehensively characterize a full size distribution from 0.25 - 32 μm of airborne particulates on a fine spatial scale (meters). The data are gathered on a near daily basis over the month of May, 2014 in a 100 km2 area encompassing parts of Richardson, and Garland, TX. Wind direction was determined to be the dominant factor in classifying the data. The highest mean PM2.5 concentration was 14.1 ± 5.7 μg·m-3 corresponding to periods when the wind was out of the south. The lowest PM2.5 concentrations were observed after several consecutive days of rainfall. The rainfall was found to not only “cleanse” the air, leaving a mean PM2.5 concentration as low as 3.0 ± 0.5 μg·m-3, but also leave the region with a more uniform PM2.5 concentration. Variograms were used to determine an appropriate spatial scale for future sensor placement to provide measurements on a neighborhood scale and found that the spatial scales varied, depending on the synoptic weather pattern, from 0.8 km to 5.2 km, with a typical length scale of 1.6 km.展开更多
文摘Neighborhood socioeconomic deprivation has been associated with health behaviors and outcomes. However, neighborhood socioeconomic status has been measured inconsistently across studies. It remains unclear whether appropriate socioeconomic indicators vary over geographic areas and geographic levels. The aim of this study is to compare the composite socioeconomic index to six socioeconomic indicators reflecting different aspects of socioeconomic environment by both geographic areas and levels. Using 2000 U.S. Census data, we performed a multivariate common factor analysis to identify significant socioeconomic resources and constructed 12 composite indexes at the county, the census tract, and the block group levels across the nation and for three states, respectively. We assessed the agreement between composite indexes and single socioeconomic variables. The component of the composite index varied across geographic areas. At a specific geographic region, the component of the composite index was similar at the levels of census tracts and block groups but different from that at the county level. The percentage of population below federal poverty line was a significant contributor to the composite index, regardless of geographic areas and levels. Compared with non-component socioeconomic indicators, component variables were more agreeable to the composite index. Based on these findings, we conclude that a composite index is better as a measure of neighborhood socioeconomic deprivation than a single indicator, and it should be constructed on an area- and unit-specific basis to accurately identify and quantify small-area socioeconomic inequalities over a specific study region.
文摘Despite growing research for residential crowding effects on housing market and public health perspectives, relatively little attention has been paid to explore and model spatial patterns of residential crowding over space. This paper focuses upon analyzing the spatial relationships between residential crowding and socio-demographic variables in Alexandria neighborhoods, Egypt. Global and local geo-statistical techniques were employed within GIS-based platform to identify spatial?variations of residential crowding determinates. The global ordinary least squares (OLS) model?assumes homogeneity of relationships between response variable and explanatory variables?across the study area. Consequently, it fails to account for heterogeneity of spatial relationships. Local model known as a geographically weighted regression (GWR) was also employed using the same?response variable and explanatory variables to capture spatial non-stationary of residential?crowding. A comparison of the outputs of both models indicated that OLS explained 74 percent of?residential crowding variations while GWR model explained 79 percent. The GWR improvedstrength of the model and provided a better goodness of fit than OLS. In addition, the findings of this analysis revealed that residential crowding was significantly associated with different structural measures particularly social characteristics of household such as higher education and illiteracy. Similarly, population size of neighborhood and number of dwelling rooms were found to have direct impacts on residential crowding rate. The spatial relationship of these measures distinctly varies over the study area.
文摘Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities glob-ally. Typically these provide at best a few recording locations per city. However, large spatial var-iability occurs on the neighborhood scale. This study sets out to comprehensively characterize a full size distribution from 0.25 - 32 μm of airborne particulates on a fine spatial scale (meters). The data are gathered on a near daily basis over the month of May, 2014 in a 100 km2 area encompassing parts of Richardson, and Garland, TX. Wind direction was determined to be the dominant factor in classifying the data. The highest mean PM2.5 concentration was 14.1 ± 5.7 μg·m-3 corresponding to periods when the wind was out of the south. The lowest PM2.5 concentrations were observed after several consecutive days of rainfall. The rainfall was found to not only “cleanse” the air, leaving a mean PM2.5 concentration as low as 3.0 ± 0.5 μg·m-3, but also leave the region with a more uniform PM2.5 concentration. Variograms were used to determine an appropriate spatial scale for future sensor placement to provide measurements on a neighborhood scale and found that the spatial scales varied, depending on the synoptic weather pattern, from 0.8 km to 5.2 km, with a typical length scale of 1.6 km.