Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation indu...Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.展开更多
As a traditional agricultural country,China has always prioritized agricultural development,and has increasingly focused on green and sustainable agricultural development.Based on the inter-provincial panel data for C...As a traditional agricultural country,China has always prioritized agricultural development,and has increasingly focused on green and sustainable agricultural development.Based on the inter-provincial panel data for China from 1997 to 2019,this study divided these data into five periods according to the Five-Year Plan(FYP)of China,measured the agricultural eco-efficiency(AEE)values using the Super-SBM model,and then determined the spatial association network of the inter-provincial AEE of China using the improved gravity model.Finally,social network analysis(SNA)was used to further analyze the evolution process of AEE,and we de-veloped a framework of how multidimensional proximity,which includes geographical,economic,technological,cognitive,and institutional proximity,made an influence on the formation of AEE spatial relation network.The findings indicated that:1)in 1997−2019,the AEE in China was present in some spatial and temporal differences characteristics at the provincial scale,and we specifically found that national macro-regulation and policy incentives played a positive role in the long-term development of AEE.2)The spatial correlation of AEE development among provincial regions were becoming closer and exhibits obvious spatial correlation and spillover effects.The evolution of the AEE network has clearly observable trends of hierarchization and aggregation,and the complexity of the correlation network continues to increase and exhibits spatial clustering characteristics that are dense in the east and sparse in the west.The network structure has changed from monocentric radiation to a multicentric network,and network nodes select the more advantageous nodes with which to connect.3)Finally,the geographical proximity had a significant negative effect;the economic,technological,and institutional proximities were all observed to contribute to the AEE network formation,and cognitive proximity did not significantly influence this network formation.展开更多
基金This research was funded by the National Science Foundation under the Project“Synergic evolution mechanism of intercity transportation and metropolitan tourism spatial pattern”[Grant number.41771162]It was also funded by the National First-Class Discipline Development Project in Hunan Province under the category of“Geography”[Grang number.510002].
文摘Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.
基金Under the auspices of National Key R&D Program of China(No.2018YFD 1100104)Natural Science Foundation of Anhui Province(No.2108085-MD29)National Natural Science Foundation of China(No.41571400)。
文摘As a traditional agricultural country,China has always prioritized agricultural development,and has increasingly focused on green and sustainable agricultural development.Based on the inter-provincial panel data for China from 1997 to 2019,this study divided these data into five periods according to the Five-Year Plan(FYP)of China,measured the agricultural eco-efficiency(AEE)values using the Super-SBM model,and then determined the spatial association network of the inter-provincial AEE of China using the improved gravity model.Finally,social network analysis(SNA)was used to further analyze the evolution process of AEE,and we de-veloped a framework of how multidimensional proximity,which includes geographical,economic,technological,cognitive,and institutional proximity,made an influence on the formation of AEE spatial relation network.The findings indicated that:1)in 1997−2019,the AEE in China was present in some spatial and temporal differences characteristics at the provincial scale,and we specifically found that national macro-regulation and policy incentives played a positive role in the long-term development of AEE.2)The spatial correlation of AEE development among provincial regions were becoming closer and exhibits obvious spatial correlation and spillover effects.The evolution of the AEE network has clearly observable trends of hierarchization and aggregation,and the complexity of the correlation network continues to increase and exhibits spatial clustering characteristics that are dense in the east and sparse in the west.The network structure has changed from monocentric radiation to a multicentric network,and network nodes select the more advantageous nodes with which to connect.3)Finally,the geographical proximity had a significant negative effect;the economic,technological,and institutional proximities were all observed to contribute to the AEE network formation,and cognitive proximity did not significantly influence this network formation.