This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and indus...This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.展开更多
Data show that carbon emissions are increasing due to human energy consumption associated with economic development. As a result, a great deal of attention has been focused on efforts to reduce this growth in carbon e...Data show that carbon emissions are increasing due to human energy consumption associated with economic development. As a result, a great deal of attention has been focused on efforts to reduce this growth in carbon emissions as well as to formulate policies to address and mitigate climate change. Although the majority of previous studies have explored the driving forces underlying Chinese carbon emissions, few have been carried out at the city-level because of the limited availability of relevant energy consumption statistics. Here, we utilize spatial autocorrelation, Markov-chain transitional matrices, a dynamic panel model, and system generalized distance estimation(Sys-GMM) to empirically evaluate the key determinants of carbon emissions at the city-level based on Chinese remote sensing data collected between 1992 and 2013. We also use these data to discuss observed spatial spillover effects taking into account spatiotemporal lag and a range of different geographical and economic weighting matrices. The results of this study suggest that regional discrepancies in city-level carbon emissions have decreased over time, which are consistent with a marked spatial spillover effect, and a ‘club' agglomeration of high-emissions. The evolution of these patterns also shows obvious path dependence, while the results of panel data analysis reveal the presence of a significant U-shaped relationship between carbon emissions and per capita GDP. Data also show that per capita carbon emissions have increased in concert with economic growth in most cities, and that a high-proportion of secondary industry and extensive investment growth have also exerted significant positive effects on city-level carbon emissions across China. In contrast, rapid population agglomeration, improvements in technology, increasing trade openness, and the accessibility and density of roads have all played a role in inhibiting carbon emissions. Thus, in order to reduce emissions, the Chinese government should legislate to inhibit the effects of factors that promote the release of carbon while at the same time acting to encourage those that mitigate this process. On the basis of the analysis presented in this study, we argue that optimizing industrial structures, streamlining extensive investment, increasing the level of technology, and improving road accessibility are all effective approaches to increase energy savings and reduce carbon emissions across China.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.71171102)
文摘This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.
基金National Natural Science Foundation of China,No.41601151Guangdong Natural Science Foundation,No.2016A030310149
文摘Data show that carbon emissions are increasing due to human energy consumption associated with economic development. As a result, a great deal of attention has been focused on efforts to reduce this growth in carbon emissions as well as to formulate policies to address and mitigate climate change. Although the majority of previous studies have explored the driving forces underlying Chinese carbon emissions, few have been carried out at the city-level because of the limited availability of relevant energy consumption statistics. Here, we utilize spatial autocorrelation, Markov-chain transitional matrices, a dynamic panel model, and system generalized distance estimation(Sys-GMM) to empirically evaluate the key determinants of carbon emissions at the city-level based on Chinese remote sensing data collected between 1992 and 2013. We also use these data to discuss observed spatial spillover effects taking into account spatiotemporal lag and a range of different geographical and economic weighting matrices. The results of this study suggest that regional discrepancies in city-level carbon emissions have decreased over time, which are consistent with a marked spatial spillover effect, and a ‘club' agglomeration of high-emissions. The evolution of these patterns also shows obvious path dependence, while the results of panel data analysis reveal the presence of a significant U-shaped relationship between carbon emissions and per capita GDP. Data also show that per capita carbon emissions have increased in concert with economic growth in most cities, and that a high-proportion of secondary industry and extensive investment growth have also exerted significant positive effects on city-level carbon emissions across China. In contrast, rapid population agglomeration, improvements in technology, increasing trade openness, and the accessibility and density of roads have all played a role in inhibiting carbon emissions. Thus, in order to reduce emissions, the Chinese government should legislate to inhibit the effects of factors that promote the release of carbon while at the same time acting to encourage those that mitigate this process. On the basis of the analysis presented in this study, we argue that optimizing industrial structures, streamlining extensive investment, increasing the level of technology, and improving road accessibility are all effective approaches to increase energy savings and reduce carbon emissions across China.