期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MODIS-based estimation of air temperature of the Tibetan Plateau 被引量:9
1
作者 姚永慧 张百平 《Journal of Geographical Sciences》 SCIE CSCD 2013年第4期627-640,共14页
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation sta... The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau. This paper collected time series of MODIS land surface temperature (LST) data, together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007, to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas. Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted. Regression analysis shows that recorded Ta is rather closely related to Ts, and that the GWR estimation with MODIS Ts and altitude as independent variables, has a much better result with adjusted R 2 〉 0.91 and RMSE = 1.13-1.53℃ than OLS estimation. For more than 80% of the stations, the Ta thus retrieved from Ts has residuals lower than 2℃. Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃. This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau. 展开更多
关键词 Tibetan Plateau air temperature estimation MODIS land surface temperature geographical weighted regression spatial interpolation
原文传递
Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s 被引量:5
2
作者 DAI Erfu ZHAI Ruixue +1 位作者 GE Quansheng WU Xiuqin 《Journal of Geographical Sciences》 SCIE CSCD 2014年第6期1035-1046,共12页
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage i... Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection. 展开更多
关键词 surface soil organic carbon storage climate change spatial differences grassland in Inner Mongolia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部