High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achievin...High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achieving better spatial resolution.However,due to the lack of applicable X-ray apparatus,extracting the angle information of pulsars through conventional X-ray methods is challenging.Here,we propose an approach of pulsar angle measurement based on spatially modulated X-ray intensity correlation(SMXIC),in which the angle information is obtained by measuring the spatial intensity correlation between two radiation fields.The theoretical model for this method has been established,and a proof-of-concept experiment was carried out.The SMXIC measurement of observing angles has been demonstrated,and the experimental results are consistent with the theoretical values.The potential of this method in future applications is discussed,and theoretically,the angular measurement at the level of micro-arcsecond can be expected.The sphere of pulsar navigation may benefit from our fresh insights.展开更多
Based on the variable separation principle and the similarity transformation, vortex soliton solution of a (3+1)-dimensional cubie-quintic-septimal nonlinear Schrodinger equation with spatially modulated nonlineari...Based on the variable separation principle and the similarity transformation, vortex soliton solution of a (3+1)-dimensional cubie-quintic-septimal nonlinear Schrodinger equation with spatially modulated nonlinearity under the external potential are obtained in the spatially modulated cubic-quintic-septimal nonlinear media. If the topological charge m = 0 and m ≠0, Gaussian solitons and vortex solitons can be constructed respectively. The shapes of vortex soliton possess similar structures when the value of l - m is same. Moreover, all phases of vortex solitons exist m-jump with the change of every jump as 2π/m-jumps, and thus totally realize the azimuthal change of 21r around their cores.展开更多
We report a spatially modulated polarimetry scheme by using a zero-order vortex half-wave retarder(ZVHR)and a spatial Fourier analysis method.A ZVHR is employed to analyze the input polarized light and convert it into...We report a spatially modulated polarimetry scheme by using a zero-order vortex half-wave retarder(ZVHR)and a spatial Fourier analysis method.A ZVHR is employed to analyze the input polarized light and convert it into a vectorial optical field,and an analyzer is set after the ZVHR to form an hourglass intensity pattern due to the spatial polarization modulation.Then,the input light’s Stokes parameters can be calculated by spatial Fourier analysis of the hourglass pattern with a single shot.The working principle of the polarimeter has been analyzed by the Stokes-Mueller formalism,and some quantitative measuring experiments of different polarization states have been demonstrated.The experimental results indicate that the proposed polarimeter is accurate,robust,and simple to use.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven...The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,...As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.展开更多
A new procedure of trial variational wave functional is proposed for investigating the mass renormalization and the local structure of the ground state of a one-dimensional quantum sine-Gordon model with linear spatia...A new procedure of trial variational wave functional is proposed for investigating the mass renormalization and the local structure of the ground state of a one-dimensional quantum sine-Gordon model with linear spatial modulation, whose ground state differs from that without modulation. The phase diagram obtained in parameters plane shows that the vertical part of the boundary between soliton lattice phase and incommensurate (IC) phase with vanishing gap sticks at , the IC phase can only appear for and the IC phase regime is enlarged with increasing spatial modulation in the case of definite parameter . The transition is of the continuous type on the vertical part of the boundary, while it is of the first order on the boundary for .展开更多
Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model ...Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)syst...In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.展开更多
In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece...In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.展开更多
Optical tweezers have been a valuable research tool since their invention in the 1980s. One of the most important developments in optical tweezers in recent years is the creation of two-dimensional arrays of optical t...Optical tweezers have been a valuable research tool since their invention in the 1980s. One of the most important developments in optical tweezers in recent years is the creation of two-dimensional arrays of optical traps. In this paper, a method based on interference is discussed to form gradient laser fields, which may cause the spatial modulation of particle concentration. The parameters related to the optical tweezers array are discussed in detail and simulated by the Matlab software to show the influence of important parameters on the distribution of particle concentration. The spatial redistribution of particles in a laser interference field can also be predicted according to the theoretical analysis.展开更多
In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of ante...In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of antennas are deployed at the base station and linear zero-forcing(ZF)receiver is employed for detection.By taking the transmit correlation and the randomness of shadow fading in to account,the bit error rate(BER)performance of the system is analyzed.According to the performance analysis,an approximated expression of overall average BER of the system is attained.Besides,asymptotic performance is studied and the corresponding BER expression at high signal-to-noise ratio is derived.On this basis,the diversity gain of the system can be obtained for performance evaluation.Simulation results show that the derived theoretical expressions match the simulated values well,which verifies the correctness of our analysis.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
Ambient backscatter communications(AmBC)is a new ultra-low-power communication paradigm,which holds great promise for enabling energy self-sustainability(ESS)to massive data-intensive Internet of Everything(IoE)device...Ambient backscatter communications(AmBC)is a new ultra-low-power communication paradigm,which holds great promise for enabling energy self-sustainability(ESS)to massive data-intensive Internet of Everything(IoE)devices in 6G.Recent advances improve throughput and reliability by adopting multiple-antenna techniques in conventional backscatter communications(CoBC),but they cannot be directly applied to AmBC devices for high spectral and energy efficiency due to the unknown RF source and minimalist design in backscatter tag.To fill this gap,we propose SM-backscatter,an AmBC-compatible system that greatly improves spectral efficiency while maintaining ultra-low-power consumption.Specifically,the SM-backscatter consists of two novel components:i)a multiple-antenna backscatter tag that adopts spatial modulation(SM),and ii)a joint detection algorithm that detects both backscatter and source signals.To this end,we theoretically obtain an optimal detector and propose two suboptimal detectors with low complexity.Subsequently,we derive the BERs of both the backscatter and source signals to analyze the communication performance by introducing a two-step algorithm.Our simulation results verify the correctness of the theoretical analysis and indicate that our system can significantly outperform existing solutions.展开更多
In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile ...In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.展开更多
基金financially supported by the National Natural Science Foundation of China(No.11627811)the National Key Research and Development Program of China(No.2017YFB0503303)Zhangjiang Laboratory。
文摘High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achieving better spatial resolution.However,due to the lack of applicable X-ray apparatus,extracting the angle information of pulsars through conventional X-ray methods is challenging.Here,we propose an approach of pulsar angle measurement based on spatially modulated X-ray intensity correlation(SMXIC),in which the angle information is obtained by measuring the spatial intensity correlation between two radiation fields.The theoretical model for this method has been established,and a proof-of-concept experiment was carried out.The SMXIC measurement of observing angles has been demonstrated,and the experimental results are consistent with the theoretical values.The potential of this method in future applications is discussed,and theoretically,the angular measurement at the level of micro-arcsecond can be expected.The sphere of pulsar navigation may benefit from our fresh insights.
文摘Based on the variable separation principle and the similarity transformation, vortex soliton solution of a (3+1)-dimensional cubie-quintic-septimal nonlinear Schrodinger equation with spatially modulated nonlinearity under the external potential are obtained in the spatially modulated cubic-quintic-septimal nonlinear media. If the topological charge m = 0 and m ≠0, Gaussian solitons and vortex solitons can be constructed respectively. The shapes of vortex soliton possess similar structures when the value of l - m is same. Moreover, all phases of vortex solitons exist m-jump with the change of every jump as 2π/m-jumps, and thus totally realize the azimuthal change of 21r around their cores.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61975235)the Natural Science Foundation of Hunan Province(No.2019JJ40342)。
文摘We report a spatially modulated polarimetry scheme by using a zero-order vortex half-wave retarder(ZVHR)and a spatial Fourier analysis method.A ZVHR is employed to analyze the input polarized light and convert it into a vectorial optical field,and an analyzer is set after the ZVHR to form an hourglass intensity pattern due to the spatial polarization modulation.Then,the input light’s Stokes parameters can be calculated by spatial Fourier analysis of the hourglass pattern with a single shot.The working principle of the polarimeter has been analyzed by the Stokes-Mueller formalism,and some quantitative measuring experiments of different polarization states have been demonstrated.The experimental results indicate that the proposed polarimeter is accurate,robust,and simple to use.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported in part by The Science and Technology Development Fund, Macao SAR, China (0108/2020/A3)in part by The Science and Technology Development Fund, Macao SAR, China (0005/2021/ITP)the Deanship of Scientific Research at Taif University for funding this work。
文摘With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported in part by the Science and Technology Innovation Project of CHN Energy Shuo Huang Railway Development Company Ltd(No.SHTL-22-28)the Beijing Natural Science Foundation Fengtai Urban Rail Transit Frontier Research Joint Fund(No.L231002)the Major Project of China State Railway Group Co.,Ltd.(No.K2023T003)。
文摘The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.
基金the National Key Research and Development Program of China(No.2017YFE0112600)the National Science Foundation of China[No.61971454,No.91438101&No.61771499]the National Science Foundation of Guangdong,China[No.2016A030308008].
文摘As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.
文摘A new procedure of trial variational wave functional is proposed for investigating the mass renormalization and the local structure of the ground state of a one-dimensional quantum sine-Gordon model with linear spatial modulation, whose ground state differs from that without modulation. The phase diagram obtained in parameters plane shows that the vertical part of the boundary between soliton lattice phase and incommensurate (IC) phase with vanishing gap sticks at , the IC phase can only appear for and the IC phase regime is enlarged with increasing spatial modulation in the case of definite parameter . The transition is of the continuous type on the vertical part of the boundary, while it is of the first order on the boundary for .
基金Ministry of Science and Technology Basic Resources Survey Special Project,Grant/Award Number:2019FY100900High-level Hospital Construction Project,Grant/Award Number:DFJH2019015+2 种基金National Natural Science Foundation of China,Grant/Award Number:61871021Guangdong Natural Science Foundation,Grant/Award Number:2019A1515011676Beijing Key Laboratory of Robotics Bionic and Functional Research。
文摘Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金supported by the National Natural Science Foundation of China under Grant U19B2014the Sichuan Science and Technology Program under Grant 2023NSFSC0457the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.
文摘In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.
基金supported by National Natural Science Foundation of China(No.61801106).
文摘In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.
基金Project supported by the National Natural Science Foundation of China (Grant No 20505002)the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No 000Y06-23)the Excellent Scholars Research Fund of Beijing(Grant No 20071D1600300394)
文摘Optical tweezers have been a valuable research tool since their invention in the 1980s. One of the most important developments in optical tweezers in recent years is the creation of two-dimensional arrays of optical traps. In this paper, a method based on interference is discussed to form gradient laser fields, which may cause the spatial modulation of particle concentration. The parameters related to the optical tweezers array are discussed in detail and simulated by the Matlab software to show the influence of important parameters on the distribution of particle concentration. The spatial redistribution of particles in a laser interference field can also be predicted according to the theoretical analysis.
文摘In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of antennas are deployed at the base station and linear zero-forcing(ZF)receiver is employed for detection.By taking the transmit correlation and the randomness of shadow fading in to account,the bit error rate(BER)performance of the system is analyzed.According to the performance analysis,an approximated expression of overall average BER of the system is attained.Besides,asymptotic performance is studied and the corresponding BER expression at high signal-to-noise ratio is derived.On this basis,the diversity gain of the system can be obtained for performance evaluation.Simulation results show that the derived theoretical expressions match the simulated values well,which verifies the correctness of our analysis.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金This work was supported in part by the National Key R&D Program of China with Grant number 2019YFB1803400Young Elite Scientists Sponsorship Program by CAST under Grant number 2018QNRC001National Science Foundation of China with Grant number 91738202,62071194.
文摘Ambient backscatter communications(AmBC)is a new ultra-low-power communication paradigm,which holds great promise for enabling energy self-sustainability(ESS)to massive data-intensive Internet of Everything(IoE)devices in 6G.Recent advances improve throughput and reliability by adopting multiple-antenna techniques in conventional backscatter communications(CoBC),but they cannot be directly applied to AmBC devices for high spectral and energy efficiency due to the unknown RF source and minimalist design in backscatter tag.To fill this gap,we propose SM-backscatter,an AmBC-compatible system that greatly improves spectral efficiency while maintaining ultra-low-power consumption.Specifically,the SM-backscatter consists of two novel components:i)a multiple-antenna backscatter tag that adopts spatial modulation(SM),and ii)a joint detection algorithm that detects both backscatter and source signals.To this end,we theoretically obtain an optimal detector and propose two suboptimal detectors with low complexity.Subsequently,we derive the BERs of both the backscatter and source signals to analyze the communication performance by introducing a two-step algorithm.Our simulation results verify the correctness of the theoretical analysis and indicate that our system can significantly outperform existing solutions.
基金in part by the National Natural Science Foundation of China under Grant 61771291,Grant 61671278in part by the Key Research and Development Project of Shandong Province under Grant 2018GGX101009,Grant 2019TSLH0202,Grant 2020CXGC010109+1 种基金in part by the National Nature Science Foundation of China for Excellent Young Scholars under Grant 61622111in part by the Project of International Cooperation and Exchanges NSFC under Grant 61860206005.
文摘In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.