期刊文献+
共找到32,369篇文章
< 1 2 250 >
每页显示 20 50 100
Prescribed Performance Tracking Control of Time-Delay Nonlinear Systems With Output Constraints 被引量:1
1
作者 Jin-Xi Zhang Kai-Di Xu Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1557-1565,共9页
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ... The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings. 展开更多
关键词 Nonlinear systems output constraints prescribed performance reference tracking time delays
下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
2
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
Epidemic Characteristics and Spatio-Temporal Patterns of HFRS in Qingdao City,China,2010-2022
3
作者 Ying Li Runze Lu +8 位作者 Liyan Dong Litao Sun Zongyi Zhang Yating Zhao Qing Duan Lijie Zhang Fachun Jiang Jing Jia Huilai Ma 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第9期1015-1029,共15页
Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingda... Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious. 展开更多
关键词 Hemorrhagic fever with renal syndrome Epidemic characteristics spatio-temporal distribution
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
4
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
5
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography
6
作者 Pengyu Hu Jiangpeng Wu +3 位作者 Zhengang Yan Meng He Chao Liang Hao Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期162-172,共11页
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it... High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%. 展开更多
关键词 Warhead fragment measurement High speed photography Stereo vision Multi-object tracking spatio-temporal reconstruction
下载PDF
A cloud model target damage effectiveness assessment algorithm based on spatio-temporal sequence finite multilayer fragments dispersion
7
作者 Hanshan Li Xiaoqian Zhang Junchai Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期48-64,共17页
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p... To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis. 展开更多
关键词 Target damage Cloud model Fragments dispersion Effectiveness assessment spatio-temporal sequence
下载PDF
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
8
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
下载PDF
A fast forward computational method for nuclear measurement using volumetric detection constraints
9
作者 Qiong Zhang Lin-Lv Lin 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期47-63,共17页
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour... Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method. 展开更多
关键词 Nuclear measurement Fast forward computation Volumetric constraints
下载PDF
Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints
10
作者 Xue Cai Caiping Zhang +3 位作者 Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期364-379,I0009,共17页
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup... The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management. 展开更多
关键词 Lithium-ion battery Muti-field coupling Mechanical constraints Interaction mechanisms Quantitative analysis
下载PDF
Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure
11
作者 Han Zhou HongtaoXu +2 位作者 Xinyue Chang Wei Zhang Heng Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2295-2313,共19页
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se... Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively. 展开更多
关键词 Medical image registration cross constraint semantic consistency directional consistency DUAL-CHANNEL
下载PDF
Adaptive H_(∞)Filtering Algorithm for Train Positioning Based on Prior Combination Constraints
12
作者 Xiuhui Diao Pengfei Wang +2 位作者 Weidong Li Xianwu Chu Yunming Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1795-1812,共18页
To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior in... To solve the problem of data fusion for prior information such as track information and train status in train positioning,an adaptive H∞filtering algorithm with combination constraint is proposed,which fuses prior information with other sensor information in the form of constraints.Firstly,the train precise track constraint method of the train is proposed,and the plane position constraint and train motion state constraints are analysed.A model for combining prior information with constraints is established.Then an adaptive H∞filter with combination constraints is derived based on the adaptive adjustment method of the robustness factor.Finally,the positioning effect of the proposed algorithm is simulated and analysed under the conditions of a straight track and a curved track.The results show that the positioning accuracy of the algorithm with constrained filtering is significantly better than that of the algorithm without constrained filtering and that the algorithm with constrained filtering can achieve better performance when combined with track and condition information,which can significantly reduce the train positioning error.The effectiveness of the proposed algorithm is verified. 展开更多
关键词 Train positioning combination constraint adaptive H_(∞)filter
下载PDF
Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force
13
作者 Xiaodong GUO Zhu SU Lifeng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期295-310,共16页
A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier seri... A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier series,which ensures the continuity of the derivative at the boundary and enhances the convergence.The exact characteristic equations of the multi-span spinning beams with elastic constraints under an axial compressive force are derived by the Lagrange equation.The efficiency and accuracy of the present method are validated in comparison with the finite element method(FEM)and other methods.The effects of the boundary spring stiffness,the number of spans,the spinning velocity,and the axial compressive force on the dynamic characteristics of the multi-span spinning beams are studied.The results show that the present method can freely simulate any boundary constraints without modifying the solution process.The elastic range of linear springs is larger than that of torsion springs,and it is not affected by the number of spans.With an increase in the axial compressive force,the attenuation rate of the natural frequency of a spinning beam with a large number of spans becomes larger,while the attenuation rate with an elastic boundary is lower than that under a classic simply supported boundary. 展开更多
关键词 multi-span spinning beam elastic constraint improved Fourier series free vibration semi-analytical solution
下载PDF
Dynamic Constraint-Driven Event-Triggered Control of Strict-Feedback Systems Without Max/Min Values on Irregular Constraints
14
作者 Zhuwu Shao Yujuan Wang +1 位作者 Zeqiang Li Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期569-580,共12页
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu... This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method. 展开更多
关键词 Adaptive control dynamic constraint-driven event-triggered control irregular output constraints nonlinear strict-feed-back systems
下载PDF
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems
15
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 Constrained multi-objective optimization(CMOPs) evolutionary multitasking knowledge transfer single constraint.
下载PDF
Stress tensor determination by modified hydraulic tests on pre-existing fractures:Method and stress constraints
16
作者 Guiyun Gao Chenghu Wang Ke Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1637-1648,共12页
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati... The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole. 展开更多
关键词 Stress tensor Hydraulic tests on pre-existing fractures Mean stress Stress constraint Hydraulic fracturing
下载PDF
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
17
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Research on the navigation method of large-scale differential tail-control improvised guided munitions based on rotational speed constraints
18
作者 Ning Liu Wenjiang Zhao +4 位作者 Yao Wang Kai Shen Zhong Su Wenhao Qi Yuedong Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期155-170,共16页
In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr... In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized. 展开更多
关键词 Guided projectiles Tail spin reduction RPM constraints Combined navigation Extended Kalman filter(EKF)
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
19
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
20
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部