This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithm...This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.展开更多
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi...Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.展开更多
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre...In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.展开更多
This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on diff...This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on difference and extremum to compute the timing. Clustering is used to classifying the adjusted data, and the next is associating the clusters. Based on the rules of clusters, we produce the rules of links. Association degrees between each two links can be determined. It is easy to get association chains according to the degree. The state association rules that can be obtained in accordance with association rules are the final results. Some industry guidance can be directly summarized from the state association rules, and we can apply the guidance to improve the efficiency of production and operational in allied industries.展开更多
In this paper, by considering the fuzzy nature of the data in real-life problems, single machine scheduling problems with fuzzy processing time and multiple objectives are formulated and an efficient genetic algorithm...In this paper, by considering the fuzzy nature of the data in real-life problems, single machine scheduling problems with fuzzy processing time and multiple objectives are formulated and an efficient genetic algorithm which is suitable for solving these problems is proposed. As illustrative numerical examples, twenty jobs processing on a machine is considered. The feasibility and effectiveness of the proposed method have been demonstrated in the simulation.展开更多
In this paper we present a multi-optimization technique based on genetic algorithms to search optimal cuttings parameters such as cutting depth, feed rate and cutting speed of multi-pass turning processes. Tow objecti...In this paper we present a multi-optimization technique based on genetic algorithms to search optimal cuttings parameters such as cutting depth, feed rate and cutting speed of multi-pass turning processes. Tow objective functions are simultaneously optimized under a set of practical of machining constraints, the first objective function is cutting cost and the second one is the used tool life time. The proposed model deals multi-pass turning processes where the cutting operations are divided into multi-pass rough machining and finish machining. Results obtained from Genetic Algorithms method are presented in Pareto frontier graphic;this technique helps us in decision making process. An example is presented to illustrate the procedure of this technique.展开更多
When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflect...When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflects the perspective of the local heritage authority. We present a methodology that permits finding and comparing optimal retrofits for historic buildings in a multi-perspective and quantitative way. We use an analytic hierarchyprocess to quantify conservation compatibility by distilling a conservation score from the opinions of 10 experts in the field. This score,along with energy needs for heating and cooling and thermal comfort,are the three targets of a multi-objective optimization aimed at identifying optimal retrofits for a medieval building in the north of Italy,destined to become a museum. Retrofit measures considered were different kinds of external and internal envelope insulation,improvement of airtightness,replacement of windows,and ventilative cooling. The result is a portfolio of optimal retrofits that cover the whole range of conservation compatibility. We showthat in the analyzed case heritage preservation is compatible with a four-fold reduction in energy needs at a high thermal comfort level. Even higher energy savings are only achievable at the cost of heritage degradation.展开更多
In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framewor...In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.展开更多
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate a...Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion loss.First,the backbone network is built on CSPDarkNet53.Then a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the model.Finally,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense objects.Sufficient experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection speed.The mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.展开更多
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro...Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.展开更多
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models bas...This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity.展开更多
In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish the...In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish these features among the objects already separated from each other. The problems will be undoubtedly more complex and of greater challenge if the objects are touched or/and overlapped. This letter presents an algorithm that can be used to separate the touches and overlaps existing in the objects within a 2-D image. The approach is first to convert the gray-scale image to its corresponding binary one and then to the 3-D topographic one using the erosion operations. A template (or mask) is engineered to search the topographic surface for the saddle point, from which the segmenting orientation is determined followed by the desired separating operation. The algorithm is tested on a real image and the running result is adequately satisfying and encouraging.展开更多
This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indi...This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indicates that the whole performance of application system model described by UML is much better than the one described by PO.展开更多
Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.Ho...Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection.展开更多
Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophtha...Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.展开更多
This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,th...This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.展开更多
文摘This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)
文摘Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.
基金This work was supported by the UK EPSRC (GR/N13319, GR/R10875).
文摘In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.
文摘This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on difference and extremum to compute the timing. Clustering is used to classifying the adjusted data, and the next is associating the clusters. Based on the rules of clusters, we produce the rules of links. Association degrees between each two links can be determined. It is easy to get association chains according to the degree. The state association rules that can be obtained in accordance with association rules are the final results. Some industry guidance can be directly summarized from the state association rules, and we can apply the guidance to improve the efficiency of production and operational in allied industries.
基金supported by the National Natural Science Foundation of China(NNSFC)(the grant No.60274043)supported by the National High-tech Research&Development Project(863)(the grant No.2002AA412610)
文摘In this paper, by considering the fuzzy nature of the data in real-life problems, single machine scheduling problems with fuzzy processing time and multiple objectives are formulated and an efficient genetic algorithm which is suitable for solving these problems is proposed. As illustrative numerical examples, twenty jobs processing on a machine is considered. The feasibility and effectiveness of the proposed method have been demonstrated in the simulation.
文摘In this paper we present a multi-optimization technique based on genetic algorithms to search optimal cuttings parameters such as cutting depth, feed rate and cutting speed of multi-pass turning processes. Tow objective functions are simultaneously optimized under a set of practical of machining constraints, the first objective function is cutting cost and the second one is the used tool life time. The proposed model deals multi-pass turning processes where the cutting operations are divided into multi-pass rough machining and finish machining. Results obtained from Genetic Algorithms method are presented in Pareto frontier graphic;this technique helps us in decision making process. An example is presented to illustrate the procedure of this technique.
文摘When deciding on the best historic building retrofit,energy savings and thermal comfort can be quantitatively evaluated using an energy model,whereas conservation compatibility is intrinsically qualitative and reflects the perspective of the local heritage authority. We present a methodology that permits finding and comparing optimal retrofits for historic buildings in a multi-perspective and quantitative way. We use an analytic hierarchyprocess to quantify conservation compatibility by distilling a conservation score from the opinions of 10 experts in the field. This score,along with energy needs for heating and cooling and thermal comfort,are the three targets of a multi-objective optimization aimed at identifying optimal retrofits for a medieval building in the north of Italy,destined to become a museum. Retrofit measures considered were different kinds of external and internal envelope insulation,improvement of airtightness,replacement of windows,and ventilative cooling. The result is a portfolio of optimal retrofits that cover the whole range of conservation compatibility. We showthat in the analyzed case heritage preservation is compatible with a four-fold reduction in energy needs at a high thermal comfort level. Even higher energy savings are only achievable at the cost of heritage degradation.
文摘In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.
基金Doctoral Talent Training Project of Chongqing University of Posts and Telecommunications,Grant/Award Number:BYJS202007Natural Science Foundation of Chongqing,Grant/Award Number:cstc2021jcyj-msxmX0941+1 种基金National Natural Science Foundation of China,Grant/Award Number:62176034Scientific and Technological Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202101901。
文摘Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging research.Since the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion loss.First,the backbone network is built on CSPDarkNet53.Then a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the model.Finally,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense objects.Sufficient experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection speed.The mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.
基金National Natural Science Foundations of China(Nos.61222303,21276078)National High-Tech Research and Development Program of China(No.2012AA040307)+1 种基金New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET10-0885)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
基金co-supported by the National Natural Science Foundation of China(No.12101608)the NSAF(No.U2230208)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20220034).
文摘This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity.
基金Suppprted by the Scientific Research Start-up foundation of Ningbo University (No.2004037)Zhejiang Provincial Foundation for Returned Overseas Students and Scholars (No.2004884).
文摘In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish these features among the objects already separated from each other. The problems will be undoubtedly more complex and of greater challenge if the objects are touched or/and overlapped. This letter presents an algorithm that can be used to separate the touches and overlaps existing in the objects within a 2-D image. The approach is first to convert the gray-scale image to its corresponding binary one and then to the 3-D topographic one using the erosion operations. A template (or mask) is engineered to search the topographic surface for the saddle point, from which the segmenting orientation is determined followed by the desired separating operation. The algorithm is tested on a real image and the running result is adequately satisfying and encouraging.
基金Supported by the National Natureal Science Foundation of China (6 98730 36 )
文摘This paper describes how to use the Unified Modeling Language (UML) to modeling software processes in medical insurance MIS, and compares UML Modeling method with classic PO(Process Oriented) Modeling method. It indicates that the whole performance of application system model described by UML is much better than the one described by PO.
文摘Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection.
基金the Natural Science Foundation of Jiangsu Province(BK20200214)National Key R&D Program of China(2017YFB0403701)+5 种基金Jiangsu Province Key R&D Program(BE2019682 and BE2018667)National Natural Science Foundation of China(61605210,61675226,and 62075235)Youth Innovation Promotion Association of Chinese Academy of Sciences(2019320)Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC03)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060000)and Entrepreneurship and Innova-tion Talents in Jiangsu Province(Innovation of Scienti¯c Research Institutes).
文摘Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.
文摘This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.