The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h...The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.展开更多
Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an ur...Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.展开更多
This study utilized census data from Henan Province for the years 2000,2010,and 2020 to investigate the spatiotemporal evolution of population aging,defined by the proportion of the population aged 65 and above.Employ...This study utilized census data from Henan Province for the years 2000,2010,and 2020 to investigate the spatiotemporal evolution of population aging,defined by the proportion of the population aged 65 and above.Employing spatial analysis techniques such as spatial autocorrelation and the standard deviation ellipse,the research mapped out the progression and distribution of aging demographics.Furthermore,the study delved into the influencing factors of aging using an optimal parameters-based geographical detector.Results indicate a deepening degree of population aging in Henan Province,transitioning from an adult type to an old type structure.There is a marked positive spatial correlation among counties,with high-value aging areas initially decreasing,then increasing,and notably spreading from the central to the central and southern regions of the province.The center of gravity for population aging,specifically around Changge City and Xuchang City,exhibits a trajectory moving southeast before shifting northwest.Factor detection reveals that in 2000,2010,and 2020,the elderly dependency ratio predominantly influences the aging trend,with explanatory powers of 88.4%,87.9%,and 90.9%,respectively.Interaction analysis indicates that the interaction between the old-child ratio and the elderly dependency ratio has a strong explanatory power for the aging patterns in Henan Province,reaching 97.3%,97.0%,and 97.4%,respectively.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
The rural settlement is one of important aspects to understand regional human-environment relationships. Zhangjiakou city, located in the poverty belt around Beijing and Tianjin, was used as an example to analyze the ...The rural settlement is one of important aspects to understand regional human-environment relationships. Zhangjiakou city, located in the poverty belt around Beijing and Tianjin, was used as an example to analyze the evolution of rural settlements during 1985–2010 through the use of statistical and spatial analysis methods. The results demonstrate the following:(1) the area of rural settlements expanded from 665.76 to 928.14 km2 during 1985–2010. Rural settlements in prefecture city of Zhangjiakou were significantly agglomerated in terms of their spatial distribution, which presented an approximately normal distribution over the entire period. Rural settlements were usually distributed within regions where the terrain niche had an elevation of between 900 and 1500 m, and a slope from 5? to 20?;(2) there were significant regional differences in the density and size distribution of rural settlements in Zhangjiakou. The density of rural settlements in 2010 was higher than that in 1985, while there was a clustered distribution of rural settlements in 2010. There was a significant high value cluster in the size distribution, and a local negative correlation between the size and density distribution of rural settlements in Zhangjiakou;(3) rural economic development, investment in agricultural technology, and infrastructure improvement played important roles in the evolution of rural settlements. There were spatial differences in the relationship between the distribution of rural settlements and socio-economic factors in Zhangjiakou. This study provides practical guidance for the achievement of urban and rural integration development and the promotion of a new form of countryside construction.展开更多
Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security b...Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security barrier in China and the Wanjiang City Belt(WCB)along the Yangtze River is directly related to the ecological security pattern of the entire basin.Based on the Driver-Pressure-State-Impact-Response(DPSIR)model and a geographical information system(GIS)platform,an ecosystem security evaluation index system was constructed to measure and evaluate the evolution of ecosystem security in the WCB,China.Results showed that:1)From 2000 to 2018,the overall level of ecological security in the study area was in a state of either early warning or medium warning,but the level of ecological security in each prefecture-level city was significantly different.2)From the perspective of the evolution of the ecosystem,the value of its comprehensive evaluation index dropped from 4.255 in 2000 to 3.885 in 2018.From the perspective of subsystems,the value of Pressure comprehensive evaluation index is much higher than that of other subsystems,indicating that during the rapid development of the social economy,the pressure on the natural environment tended to rise,and triggered changes in the State and Response subsystems.3)The coefficient of variation(CV)of the Driver was much higher than other factors influencing the ecological security system.There are large differences in the economic development and ecological evolution of the cities in the WCB.This study has improved the theoretical research on regional ecological security,and has certain practical guiding significance for building a beautiful,green and sustainable China and promoting global ecological security.展开更多
Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation inf...Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.展开更多
Based on the National Land Use/Cover Database of China(NLUD-C) in the end of the 1980s(the 1980s,hereafter), 1995, 2000, 2005, and 2010, 665 cities were selected to study the size distribution and its changes of urban...Based on the National Land Use/Cover Database of China(NLUD-C) in the end of the 1980s(the 1980s,hereafter), 1995, 2000, 2005, and 2010, 665 cities were selected to study the size distribution and its changes of urban lands in China. In this study, the spatiotemporal evolutions of urban land size distribution as well as the influence of administrative-level on these cities were explored by combining urban spatial positions and administrative-levels. Results indicate that: 1) City size distribution using urban lands was more practical and reasonable than using non-agricultural population. 2) In the 1980s, cities with ascending urban land rank were centralized in Eastern China, specially the Changjiang(Yangtze) River Delta, the Zhujiang(Pearl) River Delta, and Beijing-Tianjin-Hebei region. Cities in Central, Western, and Northeast China mainly indicated descending urban land rank. 3) The transfer of national development focus resulted in cities with ascending urban land rank becoming evenly distributed nationwide; however, this trend was slightly centralized around Chengdu, Chongqing, and Wuhan in different periods. 4) During the 1980s to 2010, the proportion of cities with ascending urban land rank in provincial capitals, municipalities, and special administrative regions(high-level cities, hereafter) was consistently higher than those in prefecture- and county-level cities except for 2005–2010. The ranks of the majority of the prefecture- and county-level cities were mainly descending, supported by ascending; the proportion of cities with unchanged rank is small. This study breaks through the bottleneck of traditional research in the area of city size distribution by examining urban land replacing the non-agricultural population. The current study also provides scientific explanation for the healthy and reasonable development of urban land as well as the coordinated development of population urbanization and land urbanization.展开更多
Taking social statistic data as basic data,this paper extended the meaning of urban land uses,highlighted the meaning of urban land uses in modern urbanization,which includes direct,indirect and induced land uses,quan...Taking social statistic data as basic data,this paper extended the meaning of urban land uses,highlighted the meaning of urban land uses in modern urbanization,which includes direct,indirect and induced land uses,quantitatively simulated the indirect and induced land uses by the substitution method of agricultural consumption and urban carbon emission and then,analyzed the spatiotemporal evolution of urban land uses in China during 1952–2005 by spatial analysis tool of Geographic Information System. The results indicate that the area of urban land use in China had been increasing since 1952,showing an inversed pyramid structure,i.e.,the direct<the indirect<the induced. Specifically,Chinese urban land use has changed from concentrated distribution in Northwest China to balanced spatial distribution,and the eastern coastal area is under great pressure. Moreover,the northeastern region has moved into the induced dominant stage,while the western region remains at the indirect dominant stage. Finally,it is proposed that in order to guarantee the future demand of urban land use in China,ensuring the induced land use in the eastern region should be taken as a priority goal of Chinese developing policy.展开更多
Cemented paste backfill(CPB)and rock interface interaction causes the formation of an interfacial loading and affects the thermal,hydraulic,mechanical,and chemical processes in bulk CPB and thus its in-situ behavior.I...Cemented paste backfill(CPB)and rock interface interaction causes the formation of an interfacial loading and affects the thermal,hydraulic,mechanical,and chemical processes in bulk CPB and thus its in-situ behavior.In this study,a new meter-sized column model is developed to systematically investigate the multiphysics processes in CPB under interfacial loading.The obtained results discover that for the mechanical process,the interfacial loading leads to a reduced settlement and a weakened stress level in CPB.For the hydraulic process,lower matric suction and smaller moisture content coexist in CPB under interfacial loading.For the thermal process,the interfacial loading weakens the porosity-dependent thermal conduction and causes retardation in temperature variation relative to the ambient temperature.For the chemical process,weakened cement hydration with smaller electrical conductivity was observed in CPB under interfacial loading.Therefore,the obtained results reveal the linkage between the interfacial loading and multiphysics processes in CPB and thus contribute to an in-depth understanding of the multiphysics behavior of CPB in underground mines.展开更多
Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi ea...Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi earthquake sequence using the HypoDD and CAP methods.Based on our results,our main conclusions are as follows:(1)the M_(S)6.4 Yangbi earthquake sequence is a typical foreshock-mainshock-aftershock sequence.The fore-shocks of the first two stages have the obvious fronts of migration and their migration rate increased gradually.There was no apparent front of migration during the third stage,and the occurrence of the mainshock was related to stress triggering from a M5.3 foreshock.We tentatively speculate that the rupture pattern of the Yangbi earthquake sequence conforms to the cascading-rupture model;and(2)the main fault of the M_(S)6.4 Yangbi earthquake sequence is a NW-trending right-lateral strike-slip fault.As time progressed,a minor conjugate aftershock belt formed at the northwest end of this fault,and a dendritic branching structure emerged in the southern fault segment,showing a complex seismogenic fault structure.We suggested that the fault of the Yangbi earthquake sequence may be a young sub-fault of the Weixi-Weishan fault.展开更多
The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasm...The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.展开更多
Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural ind...Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.展开更多
Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying...Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying Harmonized Defense Meteorological Satellite Program-Operational Line-scan System(DMSP-OLS)and the Suomi National Polar-Orbiting Partnership-Visible Infrared Imagery Radiometer Suite(NPP-VIIRS)Nighttime Light(NTL)data,this paper investigated the characteristics of urban landscape in West Africa.Using the harmonized NTL data,spatial comparison and empirical threshold methods were employed to detect urban changes from 1993 to 2018.We examined the rate of urban change and calculated the direction of the urban expansion of West Africa using the center-of-gravity method for urban areas.In addition,we used the landscape expansion index method to assess the processes and stages of urban growth in West Africa.The accuracy of urban area extraction based on NTL data were R^(2)=0.8314 in 2000,R^(2)=0.8809 in 2006,R^(2)=0.9051 in 2012 for the DMSP-OLS and the simulated NPP-VIIRS was R^(2)=0.8426 in 2018,by using Google Earth images as validation.The results indicated that there was a high rate and acceleration of urban landscapes in West Africa,with rates of 0.0160,0.0173,0.0189,and 0.0686,and accelerations of 0.31,0.42,0.54,and 0.90 for the periods of 1998–2003,2003–2008,2008–2013,and 2013–2018,respectively.The expansion direction of urban agglomeration in West Africa during 1993–2018 was mainly from the coast to inland.However,cities located in the Sahel Region of Africa and in the middle zone expanded from north to south.Finally,the results showed that the urban landscape of West Africa was mainly in a scattered and disordered’diffusion’process,whereas only a few cities located in coastal areas experiencing the process of’coalescence’according to urban growth phase theory.This study provides urban planners with relevant insights for the urban expansion characteristics of West Africa.展开更多
Using the minimum uncertainty state of quantum integrable system as initial state, the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechani...Using the minimum uncertainty state of quantum integrable system as initial state, the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics. Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between some pairs of neighboring components of the wave packet, the deterministic dynamical evolution becomes very complicated and appears to be chaotic. It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors. It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity as in corresponding classical case.展开更多
基金supported by the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences.
文摘The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.
基金Under the auspices of Special Funds for Education and Scientific Research of the Department of Finance(Min Cai Zhi[2022]No.840)Fujian Province Key Laboratory of Geographic Information Technology and Resource Optimization Construction Project(No.PTJH17014)。
文摘Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.
基金Humanities and Social Science Project of the Ministry of Education(NO.17YJCZH041)。
文摘This study utilized census data from Henan Province for the years 2000,2010,and 2020 to investigate the spatiotemporal evolution of population aging,defined by the proportion of the population aged 65 and above.Employing spatial analysis techniques such as spatial autocorrelation and the standard deviation ellipse,the research mapped out the progression and distribution of aging demographics.Furthermore,the study delved into the influencing factors of aging using an optimal parameters-based geographical detector.Results indicate a deepening degree of population aging in Henan Province,transitioning from an adult type to an old type structure.There is a marked positive spatial correlation among counties,with high-value aging areas initially decreasing,then increasing,and notably spreading from the central to the central and southern regions of the province.The center of gravity for population aging,specifically around Changge City and Xuchang City,exhibits a trajectory moving southeast before shifting northwest.Factor detection reveals that in 2000,2010,and 2020,the elderly dependency ratio predominantly influences the aging trend,with explanatory powers of 88.4%,87.9%,and 90.9%,respectively.Interaction analysis indicates that the interaction between the old-child ratio and the elderly dependency ratio has a strong explanatory power for the aging patterns in Henan Province,reaching 97.3%,97.0%,and 97.4%,respectively.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41571087)
文摘The rural settlement is one of important aspects to understand regional human-environment relationships. Zhangjiakou city, located in the poverty belt around Beijing and Tianjin, was used as an example to analyze the evolution of rural settlements during 1985–2010 through the use of statistical and spatial analysis methods. The results demonstrate the following:(1) the area of rural settlements expanded from 665.76 to 928.14 km2 during 1985–2010. Rural settlements in prefecture city of Zhangjiakou were significantly agglomerated in terms of their spatial distribution, which presented an approximately normal distribution over the entire period. Rural settlements were usually distributed within regions where the terrain niche had an elevation of between 900 and 1500 m, and a slope from 5? to 20?;(2) there were significant regional differences in the density and size distribution of rural settlements in Zhangjiakou. The density of rural settlements in 2010 was higher than that in 1985, while there was a clustered distribution of rural settlements in 2010. There was a significant high value cluster in the size distribution, and a local negative correlation between the size and density distribution of rural settlements in Zhangjiakou;(3) rural economic development, investment in agricultural technology, and infrastructure improvement played important roles in the evolution of rural settlements. There were spatial differences in the relationship between the distribution of rural settlements and socio-economic factors in Zhangjiakou. This study provides practical guidance for the achievement of urban and rural integration development and the promotion of a new form of countryside construction.
基金Under the auspices of National Natural Science Foundation of China(No.41571124)。
文摘Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security barrier in China and the Wanjiang City Belt(WCB)along the Yangtze River is directly related to the ecological security pattern of the entire basin.Based on the Driver-Pressure-State-Impact-Response(DPSIR)model and a geographical information system(GIS)platform,an ecosystem security evaluation index system was constructed to measure and evaluate the evolution of ecosystem security in the WCB,China.Results showed that:1)From 2000 to 2018,the overall level of ecological security in the study area was in a state of either early warning or medium warning,but the level of ecological security in each prefecture-level city was significantly different.2)From the perspective of the evolution of the ecosystem,the value of its comprehensive evaluation index dropped from 4.255 in 2000 to 3.885 in 2018.From the perspective of subsystems,the value of Pressure comprehensive evaluation index is much higher than that of other subsystems,indicating that during the rapid development of the social economy,the pressure on the natural environment tended to rise,and triggered changes in the State and Response subsystems.3)The coefficient of variation(CV)of the Driver was much higher than other factors influencing the ecological security system.There are large differences in the economic development and ecological evolution of the cities in the WCB.This study has improved the theoretical research on regional ecological security,and has certain practical guiding significance for building a beautiful,green and sustainable China and promoting global ecological security.
基金supported by the National Natural Science Foundation of China(Grants No.41671159)Fundamental Research Funds for the Central Universities for funding(Grants No.XDJK2018B011)Major Projects on Philosophy and Social Sciences of Chongqing Education Commission(Grants No.19SKZDZX08)。
文摘Located in the western hinterland,Southwest China is a typical mountainous area covered by plateaus,mountains and hills.Its ruggedness hinders regional internal and external connections,and its poor transportation infrastructure has long constrained the socioeconomic development of Southwest China.Based on the GIS transportation database,this paper explored the spatiotemporal evolution and characteristics of the land transportation networks and the accessibility of Southwest China from 1917 to 2017.Regional accessibility in Southwest China has significantly improved,and transportation infrastructure has gradually integrated the transportation circles of the52 central cities.The transportation network has followed an evolutionary process from a"hub-spoke pattern"to a"network pattern",while the construction of a high-speed railway(HSR)has brought about significant spatial polarization.We argue that innovation in transportation technology is one of the most effective factors for promoting a significant change in regional accessibility.In addition,the spatial distribution and evolution of accessibility in Southwest China presents a verticalcharacteristic that distinguishes it from the plains,as the spillover effects of new transportation infrastructure on accessibility improvement are partly offset by the mountainous terrain.Additionally,in Southwest China,there is significant"path dependence"in the evolution of the transportation network,since a large portion of the population is concentrated along transportation corridors in mountainous areas.
基金the Young Scientist Fund of National Nature Science Foundation of China(No.41101148)
文摘Based on the National Land Use/Cover Database of China(NLUD-C) in the end of the 1980s(the 1980s,hereafter), 1995, 2000, 2005, and 2010, 665 cities were selected to study the size distribution and its changes of urban lands in China. In this study, the spatiotemporal evolutions of urban land size distribution as well as the influence of administrative-level on these cities were explored by combining urban spatial positions and administrative-levels. Results indicate that: 1) City size distribution using urban lands was more practical and reasonable than using non-agricultural population. 2) In the 1980s, cities with ascending urban land rank were centralized in Eastern China, specially the Changjiang(Yangtze) River Delta, the Zhujiang(Pearl) River Delta, and Beijing-Tianjin-Hebei region. Cities in Central, Western, and Northeast China mainly indicated descending urban land rank. 3) The transfer of national development focus resulted in cities with ascending urban land rank becoming evenly distributed nationwide; however, this trend was slightly centralized around Chengdu, Chongqing, and Wuhan in different periods. 4) During the 1980s to 2010, the proportion of cities with ascending urban land rank in provincial capitals, municipalities, and special administrative regions(high-level cities, hereafter) was consistently higher than those in prefecture- and county-level cities except for 2005–2010. The ranks of the majority of the prefecture- and county-level cities were mainly descending, supported by ascending; the proportion of cities with unchanged rank is small. This study breaks through the bottleneck of traditional research in the area of city size distribution by examining urban land replacing the non-agricultural population. The current study also provides scientific explanation for the healthy and reasonable development of urban land as well as the coordinated development of population urbanization and land urbanization.
基金Under the auspices of Key Program of National Natural Science Foundation of China (No. 40535026)
文摘Taking social statistic data as basic data,this paper extended the meaning of urban land uses,highlighted the meaning of urban land uses in modern urbanization,which includes direct,indirect and induced land uses,quantitatively simulated the indirect and induced land uses by the substitution method of agricultural consumption and urban carbon emission and then,analyzed the spatiotemporal evolution of urban land uses in China during 1952–2005 by spatial analysis tool of Geographic Information System. The results indicate that the area of urban land use in China had been increasing since 1952,showing an inversed pyramid structure,i.e.,the direct<the indirect<the induced. Specifically,Chinese urban land use has changed from concentrated distribution in Northwest China to balanced spatial distribution,and the eastern coastal area is under great pressure. Moreover,the northeastern region has moved into the induced dominant stage,while the western region remains at the indirect dominant stage. Finally,it is proposed that in order to guarantee the future demand of urban land use in China,ensuring the induced land use in the eastern region should be taken as a priority goal of Chinese developing policy.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘Cemented paste backfill(CPB)and rock interface interaction causes the formation of an interfacial loading and affects the thermal,hydraulic,mechanical,and chemical processes in bulk CPB and thus its in-situ behavior.In this study,a new meter-sized column model is developed to systematically investigate the multiphysics processes in CPB under interfacial loading.The obtained results discover that for the mechanical process,the interfacial loading leads to a reduced settlement and a weakened stress level in CPB.For the hydraulic process,lower matric suction and smaller moisture content coexist in CPB under interfacial loading.For the thermal process,the interfacial loading weakens the porosity-dependent thermal conduction and causes retardation in temperature variation relative to the ambient temperature.For the chemical process,weakened cement hydration with smaller electrical conductivity was observed in CPB under interfacial loading.Therefore,the obtained results reveal the linkage between the interfacial loading and multiphysics processes in CPB and thus contribute to an in-depth understanding of the multiphysics behavior of CPB in underground mines.
文摘Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi earthquake sequence using the HypoDD and CAP methods.Based on our results,our main conclusions are as follows:(1)the M_(S)6.4 Yangbi earthquake sequence is a typical foreshock-mainshock-aftershock sequence.The fore-shocks of the first two stages have the obvious fronts of migration and their migration rate increased gradually.There was no apparent front of migration during the third stage,and the occurrence of the mainshock was related to stress triggering from a M5.3 foreshock.We tentatively speculate that the rupture pattern of the Yangbi earthquake sequence conforms to the cascading-rupture model;and(2)the main fault of the M_(S)6.4 Yangbi earthquake sequence is a NW-trending right-lateral strike-slip fault.As time progressed,a minor conjugate aftershock belt formed at the northwest end of this fault,and a dendritic branching structure emerged in the southern fault segment,showing a complex seismogenic fault structure.We suggested that the fault of the Yangbi earthquake sequence may be a young sub-fault of the Weixi-Weishan fault.
基金Project(51975017) supported by the National Natural Science Foundation of ChinaProject(KZ202110005012) supported by the Scientific Research Project of Beijing Educational Committee+1 种基金ChinaProject(2018YFB1107500) supported by the National Key R&D Program of China。
文摘The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.
基金Under the auspices of National Natural Science Foundation of China(No.42271225)Research Program Fund for Humanities and Social Sciences of the Ministry of Education of China(No.22YJA790050)+2 种基金Henan Provincial Planning Fund for Philosophy and Social Sciences(No.2022BJJ011)Postgraduate Cultivating Innovation Action Plan of Henan University(No.SYLYC2022014)Henan University of Economics and Law Huang Tingfang/Xinhe Young Scholars Program(No.13)。
文摘Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.
基金Under the auspices of National Natural Science Foundation of China(No.41971202)。
文摘Investigating urban expansion patterns aids in the management of urbanization and in ameliorating the socioeconomic and environmental issues associated with economic transformation and sustainable development.Applying Harmonized Defense Meteorological Satellite Program-Operational Line-scan System(DMSP-OLS)and the Suomi National Polar-Orbiting Partnership-Visible Infrared Imagery Radiometer Suite(NPP-VIIRS)Nighttime Light(NTL)data,this paper investigated the characteristics of urban landscape in West Africa.Using the harmonized NTL data,spatial comparison and empirical threshold methods were employed to detect urban changes from 1993 to 2018.We examined the rate of urban change and calculated the direction of the urban expansion of West Africa using the center-of-gravity method for urban areas.In addition,we used the landscape expansion index method to assess the processes and stages of urban growth in West Africa.The accuracy of urban area extraction based on NTL data were R^(2)=0.8314 in 2000,R^(2)=0.8809 in 2006,R^(2)=0.9051 in 2012 for the DMSP-OLS and the simulated NPP-VIIRS was R^(2)=0.8426 in 2018,by using Google Earth images as validation.The results indicated that there was a high rate and acceleration of urban landscapes in West Africa,with rates of 0.0160,0.0173,0.0189,and 0.0686,and accelerations of 0.31,0.42,0.54,and 0.90 for the periods of 1998–2003,2003–2008,2008–2013,and 2013–2018,respectively.The expansion direction of urban agglomeration in West Africa during 1993–2018 was mainly from the coast to inland.However,cities located in the Sahel Region of Africa and in the middle zone expanded from north to south.Finally,the results showed that the urban landscape of West Africa was mainly in a scattered and disordered’diffusion’process,whereas only a few cities located in coastal areas experiencing the process of’coalescence’according to urban growth phase theory.This study provides urban planners with relevant insights for the urban expansion characteristics of West Africa.
文摘Using the minimum uncertainty state of quantum integrable system as initial state, the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics. Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between some pairs of neighboring components of the wave packet, the deterministic dynamical evolution becomes very complicated and appears to be chaotic. It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors. It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity as in corresponding classical case.