期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ultrahigh spatiotemporal resolution beam signal reconstruction with bunch phase compensation
1
作者 You-Ming Deng Yong-Bin Leng +2 位作者 Xing-Yi Xu Jian Chen Yi-Mei Zhou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期99-108,共10页
Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re... Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed. 展开更多
关键词 Turn-by-turn bunch phase compensation technique Equivalent sampling Signal reconstruction algorithm Ultrahigh spatiotemporal resolution SSRF
下载PDF
Generating high spatiotemporal resolution LAI based on MODIS/GF-1 data and combined Kriging-Cressman interpolation 被引量:6
2
作者 Liu Zhenhua Huang Rugen +2 位作者 Hu Yueming Fan Shudi Feng Peihua 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第5期120-131,共12页
Generation of high spatial and temporal resolution LAI(leaf area index)products is challenging because higher spatial resolution remotely sensed data usually have coarse temporal resolutions and vice versa.In this stu... Generation of high spatial and temporal resolution LAI(leaf area index)products is challenging because higher spatial resolution remotely sensed data usually have coarse temporal resolutions and vice versa.In this study,a novel method that combining Kriging interpolation and Cressman interpolation was proposed to generate high spatial and temporal resolution LAI products by fusing Moderate Resolution Imaging SpectroRadiometer(MODIS)characterized by coarse spatial resolution and high temporal resolution and Gaofen-1(GF-1)with fine spatial resolution and coarse temporal resolution.This method was applied to the Huangpu district of Guangzhou,Guangdong,China.The results showed that compared to field observation,the predicted values of LAI had an acceptable accuracy of 73.12%.Using Moran’s I index and Kolmogorov-Smirnov tests,it was found that the MODIS data were spatially auto-correlated and characterized by normal distributions.Scaling down the 1 km×1 km spatial resolution MODIS products to a spatial resolution of 30 m×30 m using point-Kriging resulted in a precision of 79.38%compared to the results at the same spatial resolution derived from an 8 m×8 m spatial resolution GF-1 image by scaling up using block-Kriging.Moreover,the regression models that accounts for the relationship between NDVI(Normalized Difference Vegetation Index)and LAI based on MODIS data obtained the determination coefficients ranging from 0.833 to 0.870.Finally,the data fusion and interpolation of MODIS and GF-1 data using Cressman method generated high spatial and temporal resolution LAI maps,which showed reasonably spatial and temporal variability.The results imply that the proposed method is a powerful tool to create high spatial and temporal resolution LAI products. 展开更多
关键词 data fusion MODIS GF-1 LAI spatiotemporal resolution spatial interpolation remote sensing
原文传递
High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification 被引量:15
3
作者 Xuanke Zeng Shuiqin Zheng +6 位作者 Yi Cai Qinggang Lin Jinyang Liang Xiaowei Lu Jingzhen Li Weixin Xie Shixiang Xu 《Advanced Photonics》 EI CSCD 2020年第5期53-63,共11页
We report a framing imaging based on noncollinear optical parametric amplification(NCOPA),named FINCOPA,which applies NCOPA for the first time to single-shot ultrafast optical imaging.In an experiment targeting a lase... We report a framing imaging based on noncollinear optical parametric amplification(NCOPA),named FINCOPA,which applies NCOPA for the first time to single-shot ultrafast optical imaging.In an experiment targeting a laser-induced air plasma grating,FINCOPA achieved 50 fs-resolved optical imaging with a spatial resolution of^83 lp∕mm and an effective frame rate of 10 trillion frames per second(Tfps).It has also successfully visualized an ultrafast rotating optical field with an effective frame rate of 15 Tfps.FINCOPA has simultaneously a femtosecond-level temporal resolution and frame interval and a micrometer-level spatial resolution.Combining outstanding spatial and temporal resolutions with an ultrahigh frame rate,FINCOPA will contribute to high-spatiotemporal resolution observations of ultrafast transient events,such as atomic or molecular dynamics in photonic materials,plasma physics,and laser inertial-confinement fusion. 展开更多
关键词 ultrafast imaging spatiotemporal resolution frame rate noncollinear optical parametric amplification
原文传递
Hydrochemistry and carbon isotope characteristics of Nujiang River water:Implications for CO_(2) budgets of rock weathering in the Tibetan Plateau 被引量:1
4
作者 Wenjing LIU Huiguo SUN +1 位作者 Yuanchuan LI Zhifang XU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第12期2953-2970,共18页
The Tibetan Plateau is one of the most complicated geographical units worldwide in terms of its tectonic and environmental background.Although a hotspot for continental weathering and carbon cycling studies,accurate d... The Tibetan Plateau is one of the most complicated geographical units worldwide in terms of its tectonic and environmental background.Although a hotspot for continental weathering and carbon cycling studies,accurate determination of the weathering carbon budget is challenging in this area,especially sink and source flux quantification and the controlling mechanisms.Compared with other major rivers on the plateau,the Nujiang River is characterized by less human disturbance and maintains a relatively pristine state.This study investigates the high spatiotemporal resolution hydrochemistry and dual-carbon isotope composition(δ~(13)C_(DIC)andΔ~(14)C_(DIC))of river water in the Nujiang River Basin.The results revealed that the solutes and dissolved inorganic carbon in the river water are predominantly derived from rock weathering by carbonic and sulfuric acids,mainly due to the carbonate weathering process,and significantly enhanced by deep carbon sourcing from hot springs in the fault zone.The average contributions of geological and modern carbon in the main stream of the Nujiang River are 35.2%and 64.8%,respectively,and sulfide oxidation contributes>90%of sulfate ions in the river water.After considering the involvement of sulfuric acid generated by sulfide oxidation during rock weathering,the calculated consumption fluxes of atmospheric CO_(2) by silicate and carbonate weathering in the watershed were decreased by approximately 52.0%and 37.4%,respectively,compared with those calculated ignoring this process.Rock weathering of the Nujiang River Basin is a“CO_(2) sink”on a short time scale,while the participation of sulfuric acid makes it a“CO_(2) source”on a geological time scale.The high-frequency observations of ion concentrations,elemental ratios,and calculated contributions of different rock weathering materials indicate that carbonate rock weathering is more sensitive to temperature and runoff variations than silicate rock weathering,with the solute contribution from carbonate weathering increasing significantly during monsoon period.The material input from different rock types is dominated by the hydrological pathways and water-rock reaction times in the basin.This study reveals the river solute origins and weathering CO_(2) sequestration effect in response to a monsoonal climate in one of the most representative pristine plateau watersheds in the world,which is of great importance for elucidating the weathering control mechanisms and CO_(2) net sourcesink effect in plateau watersheds. 展开更多
关键词 Tibetan Plateau Nujiang River Basin CO_(2)budgets of rock weathering Hydrochemistry and carbon isotope composition High spatiotemporal resolution
原文传递
Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators 被引量:6
5
作者 X Luís Deán-Ben Gali Sela +5 位作者 Antonella Lauri Moritz Kneipp Vasilis Ntziachristos Gil G Westmeyer Shy Shoham Daniel Razansky 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期288-294,共7页
Non-invasive observation of spatiotemporal activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience.We developed a volumetric multispectral optoacoustic tomography pla... Non-invasive observation of spatiotemporal activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience.We developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains.It can record 100 volumetric frames per second across scalable fields of view ranging between 50 and 1000 mm^(3) with respective spatial resolution of 35–200μm.Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically encoded calcium indicator GCaMP5G demonstrate,for the first time,the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the longstanding penetration barrier of optical imaging in scattering brains.The newly developed platform thus offers unprecedented capabilities for functional whole-brain observations of fast calcium dynamics;in combination with optoacoustics'well-established capacity for resolving vascular hemodynamics,it could open new vistas in the study of neural activity and neurovascular coupling in health and disease. 展开更多
关键词 functional neuro-imaging genetically encoded calcium indicators high spatiotemporal resolution large-scale brain activity optoacoustic tomography PHOTOACOUSTICS real-time imaging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部