提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMI...提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMIT语音数据库构成的多说话人语音数据上的实验结果表明:通过增加稀疏网络中隐层节点的个数可以提高说话人分割的效果,与贝叶斯信息准则(Bayesian information criterion,BIC)方法和稀疏自编码网络方法相比,所提基于稀疏神经网络的说话人分割方法的性能有明显提高.展开更多
针对非线性、非高斯系统状态的在线估计问题,提出一种改进的粒子滤波算法,该算法综合考虑"优选建议分布函数"和"重采样"两种并行改进滤波性能的方法.首先通过Unscented卡尔曼滤波器产生系统的状态估计,并在协方差...针对非线性、非高斯系统状态的在线估计问题,提出一种改进的粒子滤波算法,该算法综合考虑"优选建议分布函数"和"重采样"两种并行改进滤波性能的方法.首先通过Unscented卡尔曼滤波器产生系统的状态估计,并在协方差预测阶段引入衰减记忆因子,消弱滤波器对历史信息的依赖,增强当前量测信息对滤波器的修正作用,从而产生一个优选的建议分布函数,有效抑制了粒子退化现象;接着在重采样阶段引入MCMC(Markov Chain Monte Carlo)方法来构造马尔科夫链产生服从目标分布的粒子,使样本更加多样化,有效避免了粒子枯竭问题.最后,通过系统仿真及说话人跟踪实验,证明了该算法的有效性.展开更多
文摘提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMIT语音数据库构成的多说话人语音数据上的实验结果表明:通过增加稀疏网络中隐层节点的个数可以提高说话人分割的效果,与贝叶斯信息准则(Bayesian information criterion,BIC)方法和稀疏自编码网络方法相比,所提基于稀疏神经网络的说话人分割方法的性能有明显提高.
文摘针对非线性、非高斯系统状态的在线估计问题,提出一种改进的粒子滤波算法,该算法综合考虑"优选建议分布函数"和"重采样"两种并行改进滤波性能的方法.首先通过Unscented卡尔曼滤波器产生系统的状态估计,并在协方差预测阶段引入衰减记忆因子,消弱滤波器对历史信息的依赖,增强当前量测信息对滤波器的修正作用,从而产生一个优选的建议分布函数,有效抑制了粒子退化现象;接着在重采样阶段引入MCMC(Markov Chain Monte Carlo)方法来构造马尔科夫链产生服从目标分布的粒子,使样本更加多样化,有效避免了粒子枯竭问题.最后,通过系统仿真及说话人跟踪实验,证明了该算法的有效性.