With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate mult...With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate multi-valued functions in the variable separation solution, we investigate the interactions among special multi-dromions, dromion-like multi-peakons, and dromion-like multi-semifoldons, which all demonstrate non-completely elastic properties.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
基金Supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers,China (Grant No. 2009RC01)+1 种基金the Undergraduate Innovative Base of Zhejiang A & F University,Chinathe Zhejiang Province Undergraduate Scientific and Technological Innovation Project,China (Grant No. 2012R412018)
文摘With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate multi-valued functions in the variable separation solution, we investigate the interactions among special multi-dromions, dromion-like multi-peakons, and dromion-like multi-semifoldons, which all demonstrate non-completely elastic properties.