A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse d...A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.展开更多
The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expr...The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expression showed that the effective mass vanishes in the ab-sence of the external field. This is in conflict with observations which show that it reduces to the ordinary mass. To cure this defect a new model is developed assuming the existence of vacuum force as verified experimentally as shown by Casimir effect. Using Newton’s second law and the quantum expression of momentum, useful expressions were found. The same expression was found using generalized special relativity. Strikingly the three models reduced to the conventional one in the absence of vacuum, they also reduced to the ordinary electron mass in the absence of all forces.展开更多
A general frequency-dependent dispersion relation of the speed of light in different mediums (vacuum, insulator, plasma) is deduced based on the Proca equations. Several recent astronomical observations of the pulsa...A general frequency-dependent dispersion relation of the speed of light in different mediums (vacuum, insulator, plasma) is deduced based on the Proca equations. Several recent astronomical observations of the pulsars are used to set the limits on the photon rest mass by this method and several upper bounds of larger than one order improvement than previous similar results are obtained. Considering the dispersion of the massive photon, the possible upper limits on the photon rest mass are also derived from the recently experimental results for testing the constancy of the speed of light in special relativity.展开更多
The diagrammatic approach to the collision problems in Newtonian mechanics is useful. We show in this article that the same technique can be applied to the case of the special relativity. The two circles play an impor...The diagrammatic approach to the collision problems in Newtonian mechanics is useful. We show in this article that the same technique can be applied to the case of the special relativity. The two circles play an important role in Newtonian mechanics, while in the special relativity, we need one circle and one ellipse. The circle shows the collision in the center-of-mass system. And the ellipse shows the collision in the laboratory system. These two figures give all information on two dimensional elastic collisions in the special relativity.展开更多
The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). Thi...The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.展开更多
This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), th...This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.展开更多
By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and ...By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and E=mc<sup>2</sup>, where v is the body moving speed, c is the wave speed and is the hydrodynamic mass at the zero speed. Thus a hydrodynamic analogy to the relativistic particle motion in vacuum can be traced. The velocity dependence of mass and the mass-energy equivalence are universal for any wave medium, which should not be regarded as a consequence of relative Lorentz time-space, but one of the existence of wave in the medium. Its further inference leads to an even more significant physical picture. If the mass particle moves in an unbounded space at a supercritical speed, i.e. , waves are generated and radiated from it, like the Mach waves by the supersonic plane, and the particle itself experiences a resistance as reaction from the wave radiation. By an extension of this analogy, it can be interred from a hydrodynamic superconductive phenomenon that particles or waves can move possibly at a superluminal speed without experiencing any resistance through a tunnel (a bounded space) under certain conditions. Therefore the speed of light is not the limit of our physical world and superluminal phenomena are possible.展开更多
It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to ...It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to answer this question is to recall that a particle can behave like a wave. Particle properties like energy and momentum are known to be related to their corresponding wave properties (frequency and wave vector). Mass is clearly a particle property;is it also related to a wave property? This study suggests that it is. We found that mass and energy appear to share similar physical nature in the wave perspective. Both of them are related to the curvature of bending the vacuum medium during the propagation of the excitation wave. This similarity explains why they are convertible.展开更多
Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity o...Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity of the object not directly to the observer, but instead to the center of gravity of object and observer. The reason why such a mass influence has not been reported might be that the mass of the observer in most experiments is much greater than that of the object, for example when earth is observing, satellites or detectors are studying nuclear masses.展开更多
In this paper, I show that the Special Relativistic effect of mass increase that occurs within objects when they move at high speed can be explained using Classical Physics principles. In my analysis, the wave nature ...In this paper, I show that the Special Relativistic effect of mass increase that occurs within objects when they move at high speed can be explained using Classical Physics principles. In my analysis, the wave nature of condensed matter and energy/mass equivalence are taken into consideration. The wave nature of particles is modelled as the particle structure comprising three-dimensional standing waves. When this is done, the difference in the energy sum of the component waves that comprise a particle moving at a high speed, when compared to those of a stationary particle, completely accounts for the mass increase. Furthermore, the additional momentum of the wave components in the direction of motion (the Longitudinal direction) is the cause of the inertia, or effective mass, of the object being greater than that in the Transverse direction (orthogonal to the direction of motion).展开更多
This article presents a physical model, which describes the ideas of special relativity, in a rational, logical, simple and understandable manner, while using basic mathematical tools. The model is based on Albert Ein...This article presents a physical model, which describes the ideas of special relativity, in a rational, logical, simple and understandable manner, while using basic mathematical tools. The model is based on Albert Einstein’s formula, which describes the “rest” energy of a body with mass (m), given by the formula E=mc2. Based on this formula, and in accordance with the theory of special relativity, we present here a model of a body, moving at a constant velocity in space (at high speeds, close to the speed of light), with speed equal to the speed of light in space-time, determined with an “energy angle” and negative mass. This model offers a method for creating negative mass, a calculating method for the relative velocity, and a method for calculating energy and momentum, in a completely elastic collision and plastic collision, different than in the contemporary nowadays method found in classical and modern physics. In addition, the new model solves problems and paradoxes known in special relativity physics, such as the Twin Paradox and others.展开更多
Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy ...Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity.展开更多
We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth ad...We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.展开更多
文摘A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.
文摘The concept of the effective mass in crystals shows that the electron mass is affected by the crystal field and was experimentally verified. A useful expression for effective mass was obtained. Unfortunately this expression showed that the effective mass vanishes in the ab-sence of the external field. This is in conflict with observations which show that it reduces to the ordinary mass. To cure this defect a new model is developed assuming the existence of vacuum force as verified experimentally as shown by Casimir effect. Using Newton’s second law and the quantum expression of momentum, useful expressions were found. The same expression was found using generalized special relativity. Strikingly the three models reduced to the conventional one in the absence of vacuum, they also reduced to the ordinary electron mass in the absence of all forces.
基金Supported by the National Basic Research Program of China under Grant No 2003CB716300, and the National Natural Science Foundation of China under Grant No 10121503.
文摘A general frequency-dependent dispersion relation of the speed of light in different mediums (vacuum, insulator, plasma) is deduced based on the Proca equations. Several recent astronomical observations of the pulsars are used to set the limits on the photon rest mass by this method and several upper bounds of larger than one order improvement than previous similar results are obtained. Considering the dispersion of the massive photon, the possible upper limits on the photon rest mass are also derived from the recently experimental results for testing the constancy of the speed of light in special relativity.
文摘The diagrammatic approach to the collision problems in Newtonian mechanics is useful. We show in this article that the same technique can be applied to the case of the special relativity. The two circles play an important role in Newtonian mechanics, while in the special relativity, we need one circle and one ellipse. The circle shows the collision in the center-of-mass system. And the ellipse shows the collision in the laboratory system. These two figures give all information on two dimensional elastic collisions in the special relativity.
文摘The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.
文摘This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.
文摘By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and E=mc<sup>2</sup>, where v is the body moving speed, c is the wave speed and is the hydrodynamic mass at the zero speed. Thus a hydrodynamic analogy to the relativistic particle motion in vacuum can be traced. The velocity dependence of mass and the mass-energy equivalence are universal for any wave medium, which should not be regarded as a consequence of relative Lorentz time-space, but one of the existence of wave in the medium. Its further inference leads to an even more significant physical picture. If the mass particle moves in an unbounded space at a supercritical speed, i.e. , waves are generated and radiated from it, like the Mach waves by the supersonic plane, and the particle itself experiences a resistance as reaction from the wave radiation. By an extension of this analogy, it can be interred from a hydrodynamic superconductive phenomenon that particles or waves can move possibly at a superluminal speed without experiencing any resistance through a tunnel (a bounded space) under certain conditions. Therefore the speed of light is not the limit of our physical world and superluminal phenomena are possible.
文摘It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to answer this question is to recall that a particle can behave like a wave. Particle properties like energy and momentum are known to be related to their corresponding wave properties (frequency and wave vector). Mass is clearly a particle property;is it also related to a wave property? This study suggests that it is. We found that mass and energy appear to share similar physical nature in the wave perspective. Both of them are related to the curvature of bending the vacuum medium during the propagation of the excitation wave. This similarity explains why they are convertible.
文摘Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity of the object not directly to the observer, but instead to the center of gravity of object and observer. The reason why such a mass influence has not been reported might be that the mass of the observer in most experiments is much greater than that of the object, for example when earth is observing, satellites or detectors are studying nuclear masses.
文摘In this paper, I show that the Special Relativistic effect of mass increase that occurs within objects when they move at high speed can be explained using Classical Physics principles. In my analysis, the wave nature of condensed matter and energy/mass equivalence are taken into consideration. The wave nature of particles is modelled as the particle structure comprising three-dimensional standing waves. When this is done, the difference in the energy sum of the component waves that comprise a particle moving at a high speed, when compared to those of a stationary particle, completely accounts for the mass increase. Furthermore, the additional momentum of the wave components in the direction of motion (the Longitudinal direction) is the cause of the inertia, or effective mass, of the object being greater than that in the Transverse direction (orthogonal to the direction of motion).
文摘This article presents a physical model, which describes the ideas of special relativity, in a rational, logical, simple and understandable manner, while using basic mathematical tools. The model is based on Albert Einstein’s formula, which describes the “rest” energy of a body with mass (m), given by the formula E=mc2. Based on this formula, and in accordance with the theory of special relativity, we present here a model of a body, moving at a constant velocity in space (at high speeds, close to the speed of light), with speed equal to the speed of light in space-time, determined with an “energy angle” and negative mass. This model offers a method for creating negative mass, a calculating method for the relative velocity, and a method for calculating energy and momentum, in a completely elastic collision and plastic collision, different than in the contemporary nowadays method found in classical and modern physics. In addition, the new model solves problems and paradoxes known in special relativity physics, such as the Twin Paradox and others.
文摘Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity.
文摘We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.