This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th...This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.展开更多
A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in ...A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in the cross-braced bay vertically.The steel rings are designed such that they fail in bending sooner than failure of the braces in compression.Then the rings act as seismic fuses with multiple bending plastic hinges.Using nonlinear static analysis,it is shown that the proposed system can be designed to behave like cross-braced frames with regard to stiffness and strength,and like special moment frames with regard to ductility.Seismic design factors for the proposed system are recommended based on nonlinear pushover and cyclic analysis studies.展开更多
Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. ...Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of urtreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.展开更多
This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildi...This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildings (SMRF). This paper formulates a numerical study of a steel SMRF building, studied in four different situations, namely: as an office building in San Francisco; as an office building in Sacramento; as an essential facility in San Francisco, and as an essential facility in Sacramento. The analytical results of the model buildings are then compared and analyzed taking note of any significant differences. This case study explores variations in the results obtained using the two codes, particularly the design base shear and drift ratios as they relate to different locations and occupancy use. This study also proves that IBC 2003 is more stringent for the redundancy factor under design category E for the SMRF building, and drift limits for essential facilities.展开更多
The local design and construction practices in the United Arab Emirates (UAE), together with Dubai's unique rate of development, warrant special attention to the selection of Lateral Force-Resisting Systems (LFRS...The local design and construction practices in the United Arab Emirates (UAE), together with Dubai's unique rate of development, warrant special attention to the selection of Lateral Force-Resisting Systems (LFRS). This research proposes four different feasible solutions for the selection of the LFRS for tall buildings and quantifies the impact of these selections on seismic performance and cost. The systems considered are: Steel Special Moment-Resisting Frame (SMRF), Concrete SMRF, Steel Dual System (SMRF with Special Steel Plates Shear Wall, SPSW), and Concrete Dual System (SMRF with Special Concrete Shear Wall, SCSW). The LFRS selection is driven by seismic setup as well as the adopted design and construction practices in Dubai. It is found that the concrete design alternatives are consistently less expensive than their steel counterparts. The steel dual system is expected to have the least damage based on its relatively lesser interstory drifts. However, this preferred performance comes at a higher initial construction cost. Conversely, the steel SMRF system is expected to have the most damage and associated repair cost due to its excessive flexibility. The two concrete alternatives are expected to have relatively moderate damage and repair costs in addition to their lesser initial construction cost.展开更多
文摘This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.
文摘A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in the cross-braced bay vertically.The steel rings are designed such that they fail in bending sooner than failure of the braces in compression.Then the rings act as seismic fuses with multiple bending plastic hinges.Using nonlinear static analysis,it is shown that the proposed system can be designed to behave like cross-braced frames with regard to stiffness and strength,and like special moment frames with regard to ductility.Seismic design factors for the proposed system are recommended based on nonlinear pushover and cyclic analysis studies.
文摘Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of urtreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.
基金Rearch Grant from the School of Engineering,San Francisco State University
文摘This study focuses on the comparison of the Uniform Building Code (UBC) 1997 and International Building Code (IBC) 2003 in relation to the seismic design and analysis of special steel moment resisting frame buildings (SMRF). This paper formulates a numerical study of a steel SMRF building, studied in four different situations, namely: as an office building in San Francisco; as an office building in Sacramento; as an essential facility in San Francisco, and as an essential facility in Sacramento. The analytical results of the model buildings are then compared and analyzed taking note of any significant differences. This case study explores variations in the results obtained using the two codes, particularly the design base shear and drift ratios as they relate to different locations and occupancy use. This study also proves that IBC 2003 is more stringent for the redundancy factor under design category E for the SMRF building, and drift limits for essential facilities.
文摘The local design and construction practices in the United Arab Emirates (UAE), together with Dubai's unique rate of development, warrant special attention to the selection of Lateral Force-Resisting Systems (LFRS). This research proposes four different feasible solutions for the selection of the LFRS for tall buildings and quantifies the impact of these selections on seismic performance and cost. The systems considered are: Steel Special Moment-Resisting Frame (SMRF), Concrete SMRF, Steel Dual System (SMRF with Special Steel Plates Shear Wall, SPSW), and Concrete Dual System (SMRF with Special Concrete Shear Wall, SCSW). The LFRS selection is driven by seismic setup as well as the adopted design and construction practices in Dubai. It is found that the concrete design alternatives are consistently less expensive than their steel counterparts. The steel dual system is expected to have the least damage based on its relatively lesser interstory drifts. However, this preferred performance comes at a higher initial construction cost. Conversely, the steel SMRF system is expected to have the most damage and associated repair cost due to its excessive flexibility. The two concrete alternatives are expected to have relatively moderate damage and repair costs in addition to their lesser initial construction cost.