Anti-plane electroelastic problems are studied by the Trefftz boundary element method (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation and indirect boundary approach. In particular th...Anti-plane electroelastic problems are studied by the Trefftz boundary element method (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation and indirect boundary approach. In particular the point-collocation and Galerkin techniques, in which the basic unknowns are the retained expansion coefficients in the system of complete equations, are considered. Furthermore, special Trefftz functions and auxiliary functions which satisfy exactly the specified boundary conditions along the slit boundaries are also used to derive a special purpose element with local defects. The path-independent integral is evaluated at the tip of a crack to determine the energy release rate for a mode Ⅲ fracture problem. In final, the accuracy and efficiency of the Trefftz boundary element method are illustrated by an example and the comparison is made with other methods.展开更多
为研究特殊污秽条件下复合材料的耐电蚀损及漏电起痕性能,在实验室中模拟特殊污秽条件下复合材料的现场运行情况,提出了一种新的耐漏电起痕性能加速老化试验(简称"平面法")。平面法中使用硅藻土、氯化钠、碳单质、镍粉按一定比例混...为研究特殊污秽条件下复合材料的耐电蚀损及漏电起痕性能,在实验室中模拟特殊污秽条件下复合材料的现场运行情况,提出了一种新的耐漏电起痕性能加速老化试验(简称"平面法")。平面法中使用硅藻土、氯化钠、碳单质、镍粉按一定比例混合后涂覆在试样表面以模拟特殊污秽条件。平面法中加压时间只需15 min,根据试样耐电蚀损水平将其性能评定为6-10 k V 3个等级。通过大量的试验研究,分析了材料表面电蚀损过程的机理,发现平面法的严格性高于斜面法,并且具有更好的区分度。最后,建议了新的耐漏电起痕性能试验方法,以供修改制定相关标准时参考。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10472086).
文摘Anti-plane electroelastic problems are studied by the Trefftz boundary element method (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation and indirect boundary approach. In particular the point-collocation and Galerkin techniques, in which the basic unknowns are the retained expansion coefficients in the system of complete equations, are considered. Furthermore, special Trefftz functions and auxiliary functions which satisfy exactly the specified boundary conditions along the slit boundaries are also used to derive a special purpose element with local defects. The path-independent integral is evaluated at the tip of a crack to determine the energy release rate for a mode Ⅲ fracture problem. In final, the accuracy and efficiency of the Trefftz boundary element method are illustrated by an example and the comparison is made with other methods.
文摘为研究特殊污秽条件下复合材料的耐电蚀损及漏电起痕性能,在实验室中模拟特殊污秽条件下复合材料的现场运行情况,提出了一种新的耐漏电起痕性能加速老化试验(简称"平面法")。平面法中使用硅藻土、氯化钠、碳单质、镍粉按一定比例混合后涂覆在试样表面以模拟特殊污秽条件。平面法中加压时间只需15 min,根据试样耐电蚀损水平将其性能评定为6-10 k V 3个等级。通过大量的试验研究,分析了材料表面电蚀损过程的机理,发现平面法的严格性高于斜面法,并且具有更好的区分度。最后,建议了新的耐漏电起痕性能试验方法,以供修改制定相关标准时参考。