In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-m...In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-metal pollution in an area.In the present study,the soil around the molybdenum mining area in Huludao,China,was surveyed and sampled to evaluate soil heavy-metal pollution using the Nemerow multifactor pollution index method.The Tessier continuous extraction method was used to analyze the distribution of heavy-metal forms'and their content changes in the soil of this area.Thus,the bioactivity of heavy metals in the soil,the absorption of heavy metals by plants,and the distribution of heavy metals in plants were explored to provide data supporting the use of phytoremediation technology to treat the heavy-metal pollution in the molybdenum mining area and develop ecological restoration strategies for the area's wastelands.The pollution index results indicate that heavy-metal pollution in the soil around the tailings pond is severe,mainly due to Pb and Zn heavy metals.Heavy-metal pollution in the surrounding land is mainly due to Cd and Zn.Content analysis of the heavy-metal forms/states in soils shows that exchangeable forms,which are most effective and toxic to plants,of the following metals are highest in the following areas:Cd,Cu,and Zn in the mountains around the stope;Zn,Mo,and Cu in the cultivated land around the dump;and Cd,Zn,and Mo in the cultivated land around the tailings pond.The pollution index analysis provides a basic overview of soil heavy-metal pollution across the entire mining area.However,content analysis of heavy-metal forms/states better reflects the relationship between the availability of heavy metals in the soil and the effectiveness of plants.Thus,the latter analysis can help ensure that phytoremediation strategies are adequately targeted,science-based,and effective.展开更多
Based on the survey of surface sediment in Xiamen Bay in October 2011, the speciation, distribution, and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd, and Cr) in this area were studied us-ing...Based on the survey of surface sediment in Xiamen Bay in October 2011, the speciation, distribution, and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd, and Cr) in this area were studied us-ing the sequential extraction method and ecological risk assessment method. The results indicated:(1) the total concentrations of these heavy metals were influenced by runoff, industrial wastewater, and sewage, and were all higher in the coastal area than the offshore area while the highest area of Pb was a little far-ther away from the coastal water due to atmosphere deposition;(2) sequential extractions suggested that Cu was mainly composed with residual and Fe/Mn-oxide bound fractions, Pb was bound to Fe/Mn-oxide, Zn and Cr were dominated by residual, and Cd bound to exchangeable and carbonate fractions; (3) the order of migration and transformation sequence was Cd>Pb>Cu>Zn>Cr and the degree of pollution was Cd>Pb>Cu>Zn>Cr;and (4) the ratios of the secondary and primary phases showed that Zn and Cr were both clean, Cu may be polluted, Pb was moderately polluted, while Cd was heavily polluted.展开更多
Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble ...Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.展开更多
The semi-enclosed Bohai Sea has received large amount of pollutants from surrounding rivers and sewage channels along the densely populated and industrializing Bohai coasts,as well as the offshore oil exploration in t...The semi-enclosed Bohai Sea has received large amount of pollutants from surrounding rivers and sewage channels along the densely populated and industrializing Bohai coasts,as well as the offshore oil exploration in the sea.The concentrations of heavy metals copper,cobalt,nickel,zinc,lead,chromium and cadmium in 25 surface sediment samples from the central Bohai Sea are obtained by ICP-MS analysis.The speciation of these heavy metals is extracted and their distribution,fractionation,pollution status and sources are presented.High concentrations of copper,cobalt,nickel,zinc and chromium are found in the sediments off the coastal area of the Bohai Bay and the central Bohai Sea mud,while high concentrations of cadmium and lead are found in the sediments in the whole study area.The residual fraction is the dominant form of copper,cobalt,nickel,zinc and chromium in the surface sediments,while cadmium and lead have large proportions in the nonresidual fractions.The ecological risk assessment shows that the sediments in the study area are unpolluted with respect to the heavy metals of cobalt,nickel and chromium and unpolluted to moderately polluted with respect to copper,zinc,cadmium and lead.Cobalt,nickel and chromium mainly have natural origin and their concentrations significantly vary with the composition of the sediments.The contents of copper,zinc,lead and especially cadmium in sediments are suggested to be influenced by pollutants of human activities.The heavy metals in the surface sediments at most sampling stations are mainly come from the Huanghe River; the heavy metals in the sediments in the northernmost part of the study area are significantly affected by the sediment from the Luanhe River; while in the Bohai Bay and the central region they were affected by the sediment from the Haihe River and aerosol deposition.展开更多
Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(P...Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.展开更多
In this paper,the forms of Zn,Cd,Pb and Cu in water from the Changjiang source to the estuary area were determined by ASV method.The main results are as follows:(a) The total contents (Ct)of Zn,Pb,Cu and Cd in the sou...In this paper,the forms of Zn,Cd,Pb and Cu in water from the Changjiang source to the estuary area were determined by ASV method.The main results are as follows:(a) The total contents (Ct)of Zn,Pb,Cu and Cd in the source were 4.0,1. 88,1. 28 and 0. 07μg/L respectively,while Ct were in the ordet of Zn(20.1μg/L)>Cu (14. 9 μg/L) > Pb (6.73 μg/L)>Cd(0.15 μg/L)in mainstream and Zn (93.6μg/L)>Cu (7. 71 μg/L)>Pb(5. 65 μg/L) in the estuary area.However most of them were presented as Mp. Their dissolved contents (Cs)were in lower levels of Zn(1.4 μg/L)>Cu(1.3 μg/L)>Pb(0. 11 μg/L)>Cd (0. 012 μg/L).(b) The distribution of soluble forms is related to the type of metal and to the environmental variables. From source to the mainstream, the major form of Zn from MALi converted into MAb, Cd resembles Zn in forms of distribution,Pb,mainly existed as MAb.Cu,as MLb. But in the estuary area,the major forms of Cd and Pb were all MAb, then MALi varied with salinity of water.展开更多
To complement information of heavy metals' distribution, chemical speciation, activity and environmental risks in agricultural soils surrounding tailings, a total of 16 samples obtained from the 4 # railings site of ...To complement information of heavy metals' distribution, chemical speciation, activity and environmental risks in agricultural soils surrounding tailings, a total of 16 samples obtained from the 4 # railings site of Dexing copper mine of China were investigated. The total concentrations of heavy metals Zn, Fe, Cu, Pb, Cd, Cr, Hg, As, Mn, Ag, Co, and Ni were determined by inductively coupled plasma-atomic emission spectrometry. Chemical speciations of Cu, Cd, and Zn were investigated with the procedures recommended by Tessier(1979). Two different assessment approaches (GB 15618- 1995 and risk assessment code, RAC ) were employed to estimate heavy metals' environmental risks. Results indicated that heavy metals, especially Cu and Cd were in high levels of accumulation in these samples. Chemical speciation analysis results revealed that Cu was mainly in organic matter bound fraction (ORG) and residual fraction ( RES), and Cd was predominantly in exchangeable fraction (EXC), while Zn appeared mainly with the RES fraction. Environmental risk analysis results showed that Cd was in "heavy" pollution level ( classification m ) in almost all samples, which may exert "high" or "very high" environmental risks. Whereas, for Cu, one fourth samples showed "heavy" pollution level, but were located in "low" or "medium" environmental risk ranks. For Zn, many samples were grouped in "light" pollution level ( classification II ), but were related to " medium" and " high" environmental risk ranks. These results indicated heavy pollution and high environmental risk of Cd in soils surrounding the 4# tailings site, which should be paid more attention to. Meanwhile, for Cu and Zn, the contrary results obtained by different environmental risk assessment approaches, may suggest that a more scientific, adequate environmental risk assessment criterion should consider both total content and chemical speciation activity of heavy metals.展开更多
The species of Cu, Pb, Zn, Cd and Cr in sediments of the Taihu Lake, China, have been analyzed using the sequential chemical extraction method. Variations in the chemical fractions of these metals and their geographic...The species of Cu, Pb, Zn, Cd and Cr in sediments of the Taihu Lake, China, have been analyzed using the sequential chemical extraction method. Variations in the chemical fractions of these metals and their geographic distributions have also been studied. For all five metals, the residual fraction is highest but the exchangeable fraction is lowest among all the fractions. Compared to other metals, Cd has the highest percentage in the exchangeable fraction, and Cr is associated mainly with the residual fraction. Cu in the organic fraction and Pb in the Fe-Mn fraction are the important species, whereas the lowest percentages are found for Cd in the organic fraction, Cu in the Fe-Mn oxide fraction and Pb in the carbonate fraction. With respect to spatial differences, the total contents in the non-residual fractions of the metals in bay sediments are found to be higher than those in other sediments. The fractions of Cd, Cu and Cr showed significant variations in different regions. The fractions of Pb and Zn, however, did not show significant variations in spatial distribution, suggesting different amounts and different paths of anthropogenic input for the metals. Comparisons of the metal speciation indicated that Cd might be the most bioavailable metal, followed by Pb.展开更多
The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domes...The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.展开更多
Soil is a major reservoir for contaminants as it possesses an ability to bind various chemicals. These chemicals can exist in various forms in soil and different forces keep them bound to soil particles. It is essenti...Soil is a major reservoir for contaminants as it possesses an ability to bind various chemicals. These chemicals can exist in various forms in soil and different forces keep them bound to soil particles. It is essential to study these interactions because the toxicity of chemicals may strongly depend on the form in which they exist in the environment. Another thing is that soil variability and some environmental properties may change in soil and cause leaching of trace toxic elements like heavy metals tightly bound to soil particles. Metals associated with urban soil are of environmental concern because of their direct and indirect effects on human health. The main purposes of this study undertaken in the Mysore city industrial zone were to identify heavy metals with dangerous environmental load and to find out of their environmental impact (Fe, Cr, Cu, Zn, and Ni). The purpose of this work was to provide information on heavy metals concentration in industrial zone soil of Mysore city, India. Soil samples were analyzed for pH, organic matter, and electrical conductivity. Total and available heavy metal concentrations were determined by AAS. In the present study, heavy metal speciation in soil sample carried out were shows that all metals were mainly associated with the oxidizable and residual fraction, which allows us to predict their mobility in the soil sample.展开更多
The aim of this review is to investigate the application and latest developments of the Diffusive Gradients in-thin films (DGT) with a focus on the mobility and bioavailability of heavy metals in soil. Soil chemical e...The aim of this review is to investigate the application and latest developments of the Diffusive Gradients in-thin films (DGT) with a focus on the mobility and bioavailability of heavy metals in soil. Soil chemical extractions are extensively used to predict nutrients elements in the soil. However, these measurements have their weaknesses and shortcomings. Comparing DGT with conventional extraction methods, DGT is a sampling technique with significant advantages;including speciation capabilities, sensitivity, time-in- tegrated signal, low risk of contamination and time averaged concentrations. These findings have strengthened the usefulness of the DGT technique as a potential monitoring tool for soil with heavy metal contamination. Studies which have used the DGT technique to evaluate processes important to bioavailability have been booming in the last 13 years, especially its application in soils science. Some recent studies have shown a good relationship between the measurement of metals concentrations in soil and plant by DGT, and cohesive results have been obtained from these measurements when they are based on the DGT technique. DGT is a newly established procedure to assess the bioavailability of trace elements in sediments and soils, and its applications are still in the early stage of testing. Therefore, future application of DGT is likely to include the studies of HMs contamination in soil for risk assessment and transfer rates to the food chain, as some studies have indicated the potential of DGT in these areas.展开更多
The present study investigated the concentration and species of heavy metals As, Hg, Cr, Pb and Zn in water and As, Hg, Cr, Pb and Zn in sediments collected along the coastal marine areas of Tanzania so as to determin...The present study investigated the concentration and species of heavy metals As, Hg, Cr, Pb and Zn in water and As, Hg, Cr, Pb and Zn in sediments collected along the coastal marine areas of Tanzania so as to determine their behaviour and remobilization potential in the environment and the degree of their availability to edible aquatic biota for monitoring purposes. Sequential extraction revealed the presence of a significant proportion of heavy metals Cr, Pb and Zn bound to available fractions of sediments. Arsenic had the highest concentration in non available residual fractions. PCA analysis found that As-Hg, Cr-Pb were strongly correlated and that the two may be derived from the same source most likely from storm water drainage of waste water discharges, while Zn may have come from the different source like watershed erosion. Further, PCA clearly confirms the same. Generally, Zn among all heavy metals analysed was the most available to aquatic biota due to its higher average concentrations in the acid soluble fraction, followed by chromium. However, high percentages of metal species studied in Tanzania coastal marine areas were found in non available fractions which indicated that the edible aquatic biota was safe for human consumptions.展开更多
The arid zone rivers Amudarya and Syrdarya are located in Central Asia and are subjected to the influx of different kinds of natural and anthropogenic pollutants. The concentrations and speciation of heavy metals, nam...The arid zone rivers Amudarya and Syrdarya are located in Central Asia and are subjected to the influx of different kinds of natural and anthropogenic pollutants. The concentrations and speciation of heavy metals, namely, Hg, Cr, Cd, Co, U, Zn, Sc, Fe, Br, Au, and Sm. in the Amudarya and Syrdarya rivers water in the territory of Uzbekistan were investigated by applying the neutron-activation analysis and through experimental modeling using appropriate radionuclides. The heavy metals speciation in the rivers water was separated in cationic, anionic, and a combination of colloidal and neutral forms. The experimental results showed that heavy metals in the Amudarya and Syrdarya rivers water migrate as a complex set of suspended solids, cationic, anionic, and a combination of colloidal neutral forms. The ratio of neutral and colloidal forms averages approximately 40% for the majority of the investigated heavy metals, and the share of neutral and colloidal forms of heavy metals in the Syrdarya river water is slightly less than in the Amudarya river water (10-20%), which might be due to discharge of water from agricultural and industry sectors into the river.展开更多
Surface sediments and giant mudskipper (Periophthalmodon schlosseri) were collected in August and September 2008 and in March and June 2010 from six sampling sites in the west coast of Peninsular Malaysia to assess he...Surface sediments and giant mudskipper (Periophthalmodon schlosseri) were collected in August and September 2008 and in March and June 2010 from six sampling sites in the west coast of Peninsular Malaysia to assess heavy metals accumulation in the giant mudskipper. Sequential extraction technique was used to fractionate the sediments into four different geo-chemical fractions;easily, freely or leachable and exchangeable (EFLE), acid reducible, oxidizable organic and resistant fractions. Heavy metals concentrations (Cu, Zn, Pb, Cd and Ni) in the surface sediments and giant mudskipper were determined by using air acetylene flame atomic absorption spectrophotometer (AAS) Perkin Elmer Analyst 800. The results of Pearson’s correlation analyses showed that metal concentrations in the tissues of P. schlosseri were significantly correlated (p p < 0.05), correlations were observed between Cu in P. schlosseri and Cu in the sediment (oxidisable-organic, resistant and total Cu), Zn in P. schlosseri and Zn in the sediment (EFLE and total Zn), Pb in P. schlosseri and Pb in the sediment (with all the four fractions of Pb), Cd and Ni in P. schlosseri and Cd and Ni in the sediment (with all fractions of Cd and Ni except acid-reducible Cd and Ni) which might suggest the use of P. schlosseri as a biomonitoring agent for heavy metals pollution in the west coast of Peninsular Malaysia.展开更多
Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This...Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This study evaluates the toxicity of road dust using different extraction scenarios on Daphnia magna and Artemia salina as aquatic organisms and also on Prosopis cineraria and Vachellia tortilis as local plant species. Chemical analysis of different extracts shows considerable amount of trace metals, however the trace metals in the dust extract associated with suspended sediment were not absorbed by the receptors. On the other hand, the concentration of trace metals in the artificial mixture was found bioavailable and absorbed causing a high percentage of mortality. In the plant assay, significant difference was obtained in the germination percentage between the control and three different extraction exposures in both plant species. The mean root length of P. cineraria and V. tortilis were higher in 20% and 50% extracts than the control probably due to the availability of nutrients from the dust extract. Interestingly however, the seedling vigor index was the opposite with higher index in the control and lower in dust extracts that contain heavy metals.展开更多
The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equi...The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd^2+, Cu^2+, Pb^2+, and Zn^2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd^2+ (3%-52%) and Zn^2+ (11%-72%) in soil solutions were generally higher than those of Cu^2+ (0.2%-30%) and Pb^2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (Kp) and dissolved organic carbon did not show any significant influence on Kp.展开更多
This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil sam...This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil samples were collected based on horizon differentiation and analyzed using routine and special analytical techniques. Soil data were subjected to correlation analysis using SAS program. Results show that all heavy metals studied had values above critical limits in the polluted soils using known standards and that these biotoxic metals decreased with soil depths. Highly significant (P=0.01 and 0.05) relationships were established between investigated heavy metals and some soil properties, especially soil pH and organic matter. Further studies involving more edaphic properties, biotoxic metals and their bioaccessibility in crops growing on wastewater soils will surely enhance knowledge and management of these highly anthropogenically influenced soils of the study site.展开更多
In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sa...In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sampling sites of Quanzhou Bay wetland and their availability to Suaeda australis were analyzed. The Geoaccumulation Index (Igeo) values reveal that the sediments of three sampling sites may all be considered as moderately contaminated for Pb and Zn, and all sediments might be strongly contaminated with cadmium. The partitioning analyses revealed the measured heavy metals in three sites are bound to the exchangeable fraction at lower concentrations. The measured metals in a considerable amount are bound to the reducible and oxidizable fractions, and a high proportion of the measured heavy metals were distributed in the residual fraction in the sediment samples. The concentrations of Cd in each chemical phase extracted from the sediments are above natural global background levels and should be further investigated because of its toxicity. Suaeda australis has different accumulation abilities for the measured heavy metals. For the root and stem, the bioaccumulation ability assessed by bioaccumulation factor (BAF) for the measured heavy metals follows the decreasing order as: Cu〉Cr〉 Zn〉Cd, Pb, Hg. In the leaf, stronger bioaccumulation ability for Hg is exhibited. The heavy metal concentrations in Suaeda australis roots have positive correlations with their available fractions, while the exchangeable fraction of Cu and Cd might have be more important to both mature plant roots and seedling roots uptake than other fractions; as for Cr, the oxidizable fraction might make a greater contribution to the plant root uptake; as for Zn, the reducible fraction might make so contribution ; and for Pb, the oxidizable fraction might make a significant contribution to the mature plant root uptake, however, the exchangeable fraction might have a significant contribution to the seedling root uptake.展开更多
基金financially supported by the National Natural Science Foundation of China (51504066).
文摘In a single sample plot,the total amount of heavy metals in the soil could not necessarily reflect the contents of their effective states.This must be considered when attempting to determine the degree of soil heavy-metal pollution in an area.In the present study,the soil around the molybdenum mining area in Huludao,China,was surveyed and sampled to evaluate soil heavy-metal pollution using the Nemerow multifactor pollution index method.The Tessier continuous extraction method was used to analyze the distribution of heavy-metal forms'and their content changes in the soil of this area.Thus,the bioactivity of heavy metals in the soil,the absorption of heavy metals by plants,and the distribution of heavy metals in plants were explored to provide data supporting the use of phytoremediation technology to treat the heavy-metal pollution in the molybdenum mining area and develop ecological restoration strategies for the area's wastelands.The pollution index results indicate that heavy-metal pollution in the soil around the tailings pond is severe,mainly due to Pb and Zn heavy metals.Heavy-metal pollution in the surrounding land is mainly due to Cd and Zn.Content analysis of the heavy-metal forms/states in soils shows that exchangeable forms,which are most effective and toxic to plants,of the following metals are highest in the following areas:Cd,Cu,and Zn in the mountains around the stope;Zn,Mo,and Cu in the cultivated land around the dump;and Cd,Zn,and Mo in the cultivated land around the tailings pond.The pollution index analysis provides a basic overview of soil heavy-metal pollution across the entire mining area.However,content analysis of heavy-metal forms/states better reflects the relationship between the availability of heavy metals in the soil and the effectiveness of plants.Thus,the latter analysis can help ensure that phytoremediation strategies are adequately targeted,science-based,and effective.
基金The Fundamental Research Project of Third Institute Oceanography of State Oceanic Administration under contract No.2011014the Public Welfare Project of the State Oceanic Administration under contract No.2011418015
文摘Based on the survey of surface sediment in Xiamen Bay in October 2011, the speciation, distribution, and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd, and Cr) in this area were studied us-ing the sequential extraction method and ecological risk assessment method. The results indicated:(1) the total concentrations of these heavy metals were influenced by runoff, industrial wastewater, and sewage, and were all higher in the coastal area than the offshore area while the highest area of Pb was a little far-ther away from the coastal water due to atmosphere deposition;(2) sequential extractions suggested that Cu was mainly composed with residual and Fe/Mn-oxide bound fractions, Pb was bound to Fe/Mn-oxide, Zn and Cr were dominated by residual, and Cd bound to exchangeable and carbonate fractions; (3) the order of migration and transformation sequence was Cd&gt;Pb&gt;Cu&gt;Zn&gt;Cr and the degree of pollution was Cd&gt;Pb&gt;Cu&gt;Zn&gt;Cr;and (4) the ratios of the secondary and primary phases showed that Zn and Cr were both clean, Cu may be polluted, Pb was moderately polluted, while Cd was heavily polluted.
文摘Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.
基金The National Natural Science Foundation of China under contract Nos 41376055 and 41530966the Open Research Fund of the Key Laboratory of Marine Sedimentology and Environmental Geology,First Institute of Oceanography,State Oceanic Adiminstration,China under contract No.MASEG201204the Open Research Fund of the Key Laboratory of Submarine Geosciences and Technology of Ministry of Education,Ocean University of China under contract No.201362026
文摘The semi-enclosed Bohai Sea has received large amount of pollutants from surrounding rivers and sewage channels along the densely populated and industrializing Bohai coasts,as well as the offshore oil exploration in the sea.The concentrations of heavy metals copper,cobalt,nickel,zinc,lead,chromium and cadmium in 25 surface sediment samples from the central Bohai Sea are obtained by ICP-MS analysis.The speciation of these heavy metals is extracted and their distribution,fractionation,pollution status and sources are presented.High concentrations of copper,cobalt,nickel,zinc and chromium are found in the sediments off the coastal area of the Bohai Bay and the central Bohai Sea mud,while high concentrations of cadmium and lead are found in the sediments in the whole study area.The residual fraction is the dominant form of copper,cobalt,nickel,zinc and chromium in the surface sediments,while cadmium and lead have large proportions in the nonresidual fractions.The ecological risk assessment shows that the sediments in the study area are unpolluted with respect to the heavy metals of cobalt,nickel and chromium and unpolluted to moderately polluted with respect to copper,zinc,cadmium and lead.Cobalt,nickel and chromium mainly have natural origin and their concentrations significantly vary with the composition of the sediments.The contents of copper,zinc,lead and especially cadmium in sediments are suggested to be influenced by pollutants of human activities.The heavy metals in the surface sediments at most sampling stations are mainly come from the Huanghe River; the heavy metals in the sediments in the northernmost part of the study area are significantly affected by the sediment from the Luanhe River; while in the Bohai Bay and the central region they were affected by the sediment from the Haihe River and aerosol deposition.
文摘Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.
文摘In this paper,the forms of Zn,Cd,Pb and Cu in water from the Changjiang source to the estuary area were determined by ASV method.The main results are as follows:(a) The total contents (Ct)of Zn,Pb,Cu and Cd in the source were 4.0,1. 88,1. 28 and 0. 07μg/L respectively,while Ct were in the ordet of Zn(20.1μg/L)>Cu (14. 9 μg/L) > Pb (6.73 μg/L)>Cd(0.15 μg/L)in mainstream and Zn (93.6μg/L)>Cu (7. 71 μg/L)>Pb(5. 65 μg/L) in the estuary area.However most of them were presented as Mp. Their dissolved contents (Cs)were in lower levels of Zn(1.4 μg/L)>Cu(1.3 μg/L)>Pb(0. 11 μg/L)>Cd (0. 012 μg/L).(b) The distribution of soluble forms is related to the type of metal and to the environmental variables. From source to the mainstream, the major form of Zn from MALi converted into MAb, Cd resembles Zn in forms of distribution,Pb,mainly existed as MAb.Cu,as MLb. But in the estuary area,the major forms of Cd and Pb were all MAb, then MALi varied with salinity of water.
基金National Natural Science Foundation of China (No. 41073060)Shanghai Leading Academic Discipline Project,China (No.B604)the State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,China
文摘To complement information of heavy metals' distribution, chemical speciation, activity and environmental risks in agricultural soils surrounding tailings, a total of 16 samples obtained from the 4 # railings site of Dexing copper mine of China were investigated. The total concentrations of heavy metals Zn, Fe, Cu, Pb, Cd, Cr, Hg, As, Mn, Ag, Co, and Ni were determined by inductively coupled plasma-atomic emission spectrometry. Chemical speciations of Cu, Cd, and Zn were investigated with the procedures recommended by Tessier(1979). Two different assessment approaches (GB 15618- 1995 and risk assessment code, RAC ) were employed to estimate heavy metals' environmental risks. Results indicated that heavy metals, especially Cu and Cd were in high levels of accumulation in these samples. Chemical speciation analysis results revealed that Cu was mainly in organic matter bound fraction (ORG) and residual fraction ( RES), and Cd was predominantly in exchangeable fraction (EXC), while Zn appeared mainly with the RES fraction. Environmental risk analysis results showed that Cd was in "heavy" pollution level ( classification m ) in almost all samples, which may exert "high" or "very high" environmental risks. Whereas, for Cu, one fourth samples showed "heavy" pollution level, but were located in "low" or "medium" environmental risk ranks. For Zn, many samples were grouped in "light" pollution level ( classification II ), but were related to " medium" and " high" environmental risk ranks. These results indicated heavy pollution and high environmental risk of Cd in soils surrounding the 4# tailings site, which should be paid more attention to. Meanwhile, for Cu and Zn, the contrary results obtained by different environmental risk assessment approaches, may suggest that a more scientific, adequate environmental risk assessment criterion should consider both total content and chemical speciation activity of heavy metals.
文摘The species of Cu, Pb, Zn, Cd and Cr in sediments of the Taihu Lake, China, have been analyzed using the sequential chemical extraction method. Variations in the chemical fractions of these metals and their geographic distributions have also been studied. For all five metals, the residual fraction is highest but the exchangeable fraction is lowest among all the fractions. Compared to other metals, Cd has the highest percentage in the exchangeable fraction, and Cr is associated mainly with the residual fraction. Cu in the organic fraction and Pb in the Fe-Mn fraction are the important species, whereas the lowest percentages are found for Cd in the organic fraction, Cu in the Fe-Mn oxide fraction and Pb in the carbonate fraction. With respect to spatial differences, the total contents in the non-residual fractions of the metals in bay sediments are found to be higher than those in other sediments. The fractions of Cd, Cu and Cr showed significant variations in different regions. The fractions of Pb and Zn, however, did not show significant variations in spatial distribution, suggesting different amounts and different paths of anthropogenic input for the metals. Comparisons of the metal speciation indicated that Cd might be the most bioavailable metal, followed by Pb.
文摘The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.
文摘Soil is a major reservoir for contaminants as it possesses an ability to bind various chemicals. These chemicals can exist in various forms in soil and different forces keep them bound to soil particles. It is essential to study these interactions because the toxicity of chemicals may strongly depend on the form in which they exist in the environment. Another thing is that soil variability and some environmental properties may change in soil and cause leaching of trace toxic elements like heavy metals tightly bound to soil particles. Metals associated with urban soil are of environmental concern because of their direct and indirect effects on human health. The main purposes of this study undertaken in the Mysore city industrial zone were to identify heavy metals with dangerous environmental load and to find out of their environmental impact (Fe, Cr, Cu, Zn, and Ni). The purpose of this work was to provide information on heavy metals concentration in industrial zone soil of Mysore city, India. Soil samples were analyzed for pH, organic matter, and electrical conductivity. Total and available heavy metal concentrations were determined by AAS. In the present study, heavy metal speciation in soil sample carried out were shows that all metals were mainly associated with the oxidizable and residual fraction, which allows us to predict their mobility in the soil sample.
文摘The aim of this review is to investigate the application and latest developments of the Diffusive Gradients in-thin films (DGT) with a focus on the mobility and bioavailability of heavy metals in soil. Soil chemical extractions are extensively used to predict nutrients elements in the soil. However, these measurements have their weaknesses and shortcomings. Comparing DGT with conventional extraction methods, DGT is a sampling technique with significant advantages;including speciation capabilities, sensitivity, time-in- tegrated signal, low risk of contamination and time averaged concentrations. These findings have strengthened the usefulness of the DGT technique as a potential monitoring tool for soil with heavy metal contamination. Studies which have used the DGT technique to evaluate processes important to bioavailability have been booming in the last 13 years, especially its application in soils science. Some recent studies have shown a good relationship between the measurement of metals concentrations in soil and plant by DGT, and cohesive results have been obtained from these measurements when they are based on the DGT technique. DGT is a newly established procedure to assess the bioavailability of trace elements in sediments and soils, and its applications are still in the early stage of testing. Therefore, future application of DGT is likely to include the studies of HMs contamination in soil for risk assessment and transfer rates to the food chain, as some studies have indicated the potential of DGT in these areas.
文摘The present study investigated the concentration and species of heavy metals As, Hg, Cr, Pb and Zn in water and As, Hg, Cr, Pb and Zn in sediments collected along the coastal marine areas of Tanzania so as to determine their behaviour and remobilization potential in the environment and the degree of their availability to edible aquatic biota for monitoring purposes. Sequential extraction revealed the presence of a significant proportion of heavy metals Cr, Pb and Zn bound to available fractions of sediments. Arsenic had the highest concentration in non available residual fractions. PCA analysis found that As-Hg, Cr-Pb were strongly correlated and that the two may be derived from the same source most likely from storm water drainage of waste water discharges, while Zn may have come from the different source like watershed erosion. Further, PCA clearly confirms the same. Generally, Zn among all heavy metals analysed was the most available to aquatic biota due to its higher average concentrations in the acid soluble fraction, followed by chromium. However, high percentages of metal species studied in Tanzania coastal marine areas were found in non available fractions which indicated that the edible aquatic biota was safe for human consumptions.
文摘The arid zone rivers Amudarya and Syrdarya are located in Central Asia and are subjected to the influx of different kinds of natural and anthropogenic pollutants. The concentrations and speciation of heavy metals, namely, Hg, Cr, Cd, Co, U, Zn, Sc, Fe, Br, Au, and Sm. in the Amudarya and Syrdarya rivers water in the territory of Uzbekistan were investigated by applying the neutron-activation analysis and through experimental modeling using appropriate radionuclides. The heavy metals speciation in the rivers water was separated in cationic, anionic, and a combination of colloidal and neutral forms. The experimental results showed that heavy metals in the Amudarya and Syrdarya rivers water migrate as a complex set of suspended solids, cationic, anionic, and a combination of colloidal neutral forms. The ratio of neutral and colloidal forms averages approximately 40% for the majority of the investigated heavy metals, and the share of neutral and colloidal forms of heavy metals in the Syrdarya river water is slightly less than in the Amudarya river water (10-20%), which might be due to discharge of water from agricultural and industry sectors into the river.
文摘Surface sediments and giant mudskipper (Periophthalmodon schlosseri) were collected in August and September 2008 and in March and June 2010 from six sampling sites in the west coast of Peninsular Malaysia to assess heavy metals accumulation in the giant mudskipper. Sequential extraction technique was used to fractionate the sediments into four different geo-chemical fractions;easily, freely or leachable and exchangeable (EFLE), acid reducible, oxidizable organic and resistant fractions. Heavy metals concentrations (Cu, Zn, Pb, Cd and Ni) in the surface sediments and giant mudskipper were determined by using air acetylene flame atomic absorption spectrophotometer (AAS) Perkin Elmer Analyst 800. The results of Pearson’s correlation analyses showed that metal concentrations in the tissues of P. schlosseri were significantly correlated (p p < 0.05), correlations were observed between Cu in P. schlosseri and Cu in the sediment (oxidisable-organic, resistant and total Cu), Zn in P. schlosseri and Zn in the sediment (EFLE and total Zn), Pb in P. schlosseri and Pb in the sediment (with all the four fractions of Pb), Cd and Ni in P. schlosseri and Cd and Ni in the sediment (with all fractions of Cd and Ni except acid-reducible Cd and Ni) which might suggest the use of P. schlosseri as a biomonitoring agent for heavy metals pollution in the west coast of Peninsular Malaysia.
文摘Particulate matter (PM10) deposited as road dust is considered an important source of contamination from atmosphere. However, there are limited studies on the toxicity of road dust as such on different organisms. This study evaluates the toxicity of road dust using different extraction scenarios on Daphnia magna and Artemia salina as aquatic organisms and also on Prosopis cineraria and Vachellia tortilis as local plant species. Chemical analysis of different extracts shows considerable amount of trace metals, however the trace metals in the dust extract associated with suspended sediment were not absorbed by the receptors. On the other hand, the concentration of trace metals in the artificial mixture was found bioavailable and absorbed causing a high percentage of mortality. In the plant assay, significant difference was obtained in the germination percentage between the control and three different extraction exposures in both plant species. The mean root length of P. cineraria and V. tortilis were higher in 20% and 50% extracts than the control probably due to the availability of nutrients from the dust extract. Interestingly however, the seedling vigor index was the opposite with higher index in the control and lower in dust extracts that contain heavy metals.
文摘The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd^2+, Cu^2+, Pb^2+, and Zn^2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd^2+ (3%-52%) and Zn^2+ (11%-72%) in soil solutions were generally higher than those of Cu^2+ (0.2%-30%) and Pb^2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (Kp) and dissolved organic carbon did not show any significant influence on Kp.
文摘This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil samples were collected based on horizon differentiation and analyzed using routine and special analytical techniques. Soil data were subjected to correlation analysis using SAS program. Results show that all heavy metals studied had values above critical limits in the polluted soils using known standards and that these biotoxic metals decreased with soil depths. Highly significant (P=0.01 and 0.05) relationships were established between investigated heavy metals and some soil properties, especially soil pH and organic matter. Further studies involving more edaphic properties, biotoxic metals and their bioaccessibility in crops growing on wastewater soils will surely enhance knowledge and management of these highly anthropogenically influenced soils of the study site.
文摘In order to investigate distributions of heavy metal pollution in Quanzhou Bay wetland, the total concentration and chemical partitioning of a number of heavy metals (Cu, Zn, Cd, Pb, Cr, Hg) in sediments of three sampling sites of Quanzhou Bay wetland and their availability to Suaeda australis were analyzed. The Geoaccumulation Index (Igeo) values reveal that the sediments of three sampling sites may all be considered as moderately contaminated for Pb and Zn, and all sediments might be strongly contaminated with cadmium. The partitioning analyses revealed the measured heavy metals in three sites are bound to the exchangeable fraction at lower concentrations. The measured metals in a considerable amount are bound to the reducible and oxidizable fractions, and a high proportion of the measured heavy metals were distributed in the residual fraction in the sediment samples. The concentrations of Cd in each chemical phase extracted from the sediments are above natural global background levels and should be further investigated because of its toxicity. Suaeda australis has different accumulation abilities for the measured heavy metals. For the root and stem, the bioaccumulation ability assessed by bioaccumulation factor (BAF) for the measured heavy metals follows the decreasing order as: Cu〉Cr〉 Zn〉Cd, Pb, Hg. In the leaf, stronger bioaccumulation ability for Hg is exhibited. The heavy metal concentrations in Suaeda australis roots have positive correlations with their available fractions, while the exchangeable fraction of Cu and Cd might have be more important to both mature plant roots and seedling roots uptake than other fractions; as for Cr, the oxidizable fraction might make a greater contribution to the plant root uptake; as for Zn, the reducible fraction might make so contribution ; and for Pb, the oxidizable fraction might make a significant contribution to the mature plant root uptake, however, the exchangeable fraction might have a significant contribution to the seedling root uptake.