期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influences of phosphate nutritional level on the phytoavailability and speciation distribution of cadmium and lead in soil 被引量:11
1
作者 CHEN Su SUN Tie-heng +2 位作者 SUN Li-na ZHOU Qi-xing CHAO Lei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1247-1253,共7页
A pot experiment was conducted to examine the influence of phosphate levels on the phytoavailability and speciation distribution of cadmium (Cd), lead (Pb) in soil. Spring wheat (Triticum aestivum L.) was select... A pot experiment was conducted to examine the influence of phosphate levels on the phytoavailability and speciation distribution of cadmium (Cd), lead (Pb) in soil. Spring wheat (Triticum aestivum L.) was selected as the tested plant. There were 5 phosphate fertilizer(Ca(H2PO4)2) levels including 0, 50, 100, 200, and 400 mg P2O5/kg soil, marked by P0, P1, P2, P3, and P4, respectively. CdCl2·2.5H2o and Pb(NO3)2 were added to soil as the following levels: Cd + Pb = 25+0, 0+1000, and 25+1000 mg/kg, marked by T1, T2, and T3, respectively. The results showed that the P fertilizer promoted the dry weight of wheat in all treatments and alleviated the contamination induced by Cd and Pb. With increasing levels of the additional P fertilizer, Cd concentration in different parts (root, haulm, chaffand grain) of wheat decreased at the P1 level at first and then increased. The soluble plus exchangeable (SE) fraction of Cd in soil decreased at the P1 level and then increased from P2 to P4 levels. The moderate P fertilizer reduced the phytoavailability of Cd. The application of P could obviously restrain the uptake of Pb by wheat and there were significantly negative correlations between the levels of P and the uptake of Pb. Phosphorus supply resulted in a decrease in the SE fraction of Pb and there was a significantly negative correlation between the levels of P and the SE fraction of Pb in soil. All the levels of the P fertilizer in this experiment could reduce the phytoavailability of Pb. Thus, it is feasible to apply the P fertilizer (Ca(H2PO4)2) to Pb contaminated soils. However, the levels of P application should be restricted in case that redundant P may increase the phytoavailability of Cd. 展开更多
关键词 PHOSPHATE PHYTOAVAILABILITY speciation distribution CADMIUM LEAD
下载PDF
Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation 被引量:4
2
作者 Zygmunt Mariusz Gusiatin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期855-864,共10页
Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments... Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments were performed in batch conditions at constant biosurfactant concentration (3%). Both biosurfactants differed in natural pH, surface tension, critical micelle concentration and content of functional groups. After a single washing, TA (pH 3.44) more efficiently mobilized As than SAP (pH 5.44). When both biosurfactants were used at the same pH (SAP adjusted to 3.44), arsenic mobilization was improved by triple washing. The process efficiency for TA and SAP was similar, and depending on the soil sample, ranged between 50%-64%. Arsenic mobilization by TA and SAP resulted mainly from decomposition of Fe arsenates, followed by Fe3+ complexation with biosurfactants. Arsenic was efficiently released from reducible and partially from residual fractions. In all soils, As(V) was almost completely removed, whereas content of As(III) was decreased by 37%-73%. SAP and TA might be used potentially to remove As from contaminated soils. 展开更多
关键词 arsenic tannic acid saponin distribution speciation soil washing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部