Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
Maintaining natural habitats is crucial for the preservation of insects and other species that indicate environmental changes. However, the Mpanga/Kipengere Game Reserve and its surrounding farmlands are facing distur...Maintaining natural habitats is crucial for the preservation of insects and other species that indicate environmental changes. However, the Mpanga/Kipengere Game Reserve and its surrounding farmlands are facing disturbance due to human activities, which is putting many wildlife species, particularly larger mammals, at risk. To determine the impact of human activities on butterfly species diversity and abundance in the reserve and its surrounding areas, we conducted a study from November 2021 to October 2023. We collected butterfly data using transect walks and baited traps in two habitat types. Our study yielded 2799 butterfly Individuals ranging in 124 species divided into five families habitat, season, and anthropogenic factors are significant environmental variables influencing species diversity and abundance of butterflies. Therefore, it’s important to protect habitat and dry-season water for the conservation of invertebrates such as butterflies. Our study findings provide essential information for ecological monitoring and future assessment of the Mpanga/Kipengere Game Reserve ecosystem health.展开更多
Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emira...Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.展开更多
Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocar...Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocarps provide food and shelter for many organisms,mostly invertebrates,but also some vertebrates,as well as food and medicine for humans.Despite extensive research on the species diversity and phylogenetic relationships of polypores in recent years,there remains a lack of comprehensive understanding of their distribution patterns and species composition at the large scale.Checklists of polypores from the tropical zone,including tropical Africa,tropical America,and tropical Asia,were analyzed for species diversity,distribution patterns,major taxa,and nutritional modes.A total of 1,902 polypore species was found in the three regions,representing 8 orders,46families,and 250 genera of Agaricomycetes.The orders Polyporales(especially the family Polyporaceae)and Hymenochaetales(especially the family Hymenochaetaceae)had the most prolific taxa,with their species accounting for 93.4%of the total polypores listed.Each of 1,565(or 82.3%)of the total 1,902 species were found in only one of the three regions studied,and we treat them temporarily as"regional endemic species".Only 141species were shared among all three regions,accounting for a mere 7.4%.Tropical Africa and tropical America had the greatest number of shared species and the highest S?rensen similarity index(SC)value.Tropical forests had a higher species richness compared with temperate to boreal forests of the Northern Hemisphere,and in addition,also a higher proportion of white rot polypores compared to brown rot and ectomycorrhizal species.This study outlines the distribution patterns and species diversity of polypores in the world,shedding light on their ecological significance in diverse ecosystems.展开更多
Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecos...Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
The conservation of plant biodiversity has become one of the most important objectives in the sustainable management of Guinean-Congolese ecosystems. However, in the south-east zone of Cameroon, there is a lack of rig...The conservation of plant biodiversity has become one of the most important objectives in the sustainable management of Guinean-Congolese ecosystems. However, in the south-east zone of Cameroon, there is a lack of rigor in the management of these forests, which can result in the loss of species of high conservation value. The study was carried out in communal forests in the south-east zone of Cameroon. Its aim was to carry out a floristic inventory and then compare the list of species with the IUCN catalog. Twenty-four plots, each with a surface area of 0.2 ha, were set up in the Gari-Gombo communal forest. All timbers with a DBH ≥ 5 cm were systematically counted. A total of 176 species, belonging to 144 genera and 45 families, were surveyed. Fabaceae (42.08%), Malvaceae (39%), Euphorbiaceae (24.64%), Moraceae (20.92%), Apocynaceae (18.64%), Cecropiaceae (16.60%), Ulmaceae (14.76%), Meliaceae (14.61%), Violaceae (14.08%), Combretaceae (12.67%), Theobroma cacao (21.17%), Baphia leptobotrys (18.06%), Rinorea sp. (14.09%), Musanga cecropioides (12.18%), Terminalia superba (10.32%), Neosloetiopsis kamerunensis (10.14%), Celtis zenkeri (8.29%) and Alstonia boonei (7.77%) were the most important taxa. Nearly 90% of the species in this forest are Guinean species, with a dominance of Guinean-Congolese species (66%). Fourteen (14) threatened species have been identified in the FCGG. This study, which highlights the rich biodiversity of communal forests, is important for guiding biodiversity conservation policies in ecosystems used for production.展开更多
An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasi...An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasis plants communities to various environmental factors.Nineteen sample plots(50 m×50 m)were selected in the Daliyabuyi Oasis in the Taklimakan Desert hinterland based on the location of groundwater monitoring wells and 76 vegetation quadrats(25 m×25 m)were established.A two-way indicator species analysis,Mantel test,detrended correspondence analysis,canonical correspondence analysis(CCA),and hierarchical partitioning were used to provide an in-depth analysis of community classification,species composition,and environmental interpretation of the oasis.A generalized linear model was used to verify the results which showed that the current oasis community could be divided into four types according to the dominant species,which is controlled by soil moisture.Measurement of species composition and distribution of communities showed significant differences between species diversity of individual community types.Variations in groundwater depth affects patterns of species diversity which is sensitive to richness,while the degree of surface water disturbance affects the pattern of species evenness.Moreover,the CCA ordination map showed that community distribution and diversity characteristics have their own preferences in habitat gradients.The study concluded that the species dominance of the community and the composition and distribution are not dominated by a single factor.There are differences in the scale and effect of different water resource types in maintaining community characteristics.展开更多
[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were...[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were 107 species of vascular plants belonging to 79 genera and 51 families in Leigong Mountain F.longipetiolata community,including 3 species of pteridophytes belonging to 3 genera and 3 families,104 species of spermatophytes belonging to 76 genera and 48 families,including 3 species of gymnosperms belonging to 3 genera and 3 families,and 101 species of angiosperms belonging to 73 genera and 45 families.The types of Leigong Mountain F.longipetiolata community were divided into 7 formations,and the top 10 important species of each formation were Fagaceae,followed by Lauraceae and Ericaceae.The change trend of tree layer richness index was formation I>formation IV>formation VI>formation III>formation VII>formation II>formation V;the dominance index was formation I>formation IV>formation V>formation VI>formation VII>formation III>formation II;H diversity index was formation V>formation II>formation I>formation III>formation VII>formation VI>formation IV;the evenness index is formation II>formation III>formation VI>formation VII>formation IV>formation I>formation V;the total diversity index of the community,formation I(3.67)was the highest,formation V(2.74)was the lowest,manifested as formation I>formation III>formation VI>formation II>formation IV>formation VII>formation V.[Conclusions]The community stability is closely related to its species composition,and the background species is the basis for the survival of the community;the existence of rare species can further enhance the community diversity index and enhance the community stability.展开更多
The loss of bird species diversity is a crucial problem in the European agricultural landscape.Change in the area coverage of major land cover types has been mentioned as one of the main factors responsible for bird b...The loss of bird species diversity is a crucial problem in the European agricultural landscape.Change in the area coverage of major land cover types has been mentioned as one of the main factors responsible for bird biodiversity impoverishment.In this study,we focused on the impact of landscape matrix characteristics on bird species richness and on Faith’s phylogenetic diversity index on a spatial scale of 1000-m radius around the measured occurrence points.We investigated how land cover composition affects bird diversity on the landscape scale using nationwide citizen science data.In total,168,739 records of bird occurrence in the South Moravian Region of the Czech Republic during growing season from 2009 to 2019 were evaluated.We found that the presence of water bodies and wetlands significantly corresponded to the areas of highest bird species richness.We also revealed that the presence of forests(~60%of the forest in the Czech Republic is occupied by commercial forests),urban areas and arable land were negatively associated with bird species richness and phylogenetic diversity.Forests(both coniferous and deciduous)and urban habitats were found to have a tendency to host a clustered phylogenetic community structure in comparison with wetland and arable land.A strong negative association between forest proportion and bird diversity led us to conclude that the expansion of the forest(with simple species composition,horizontal and vertical structure)could be one of the critical drivers of the decline of bird species diversity in the European agricultural landscape.On the other hand,our results also pointed out that small woody features(i.e.,woodlots)and scattered woodland shrub vegetation were one of the main landscape characteristics supporting a bird diversity in rural landscape.This is in concordance with other studies which mention these landscape structures as important elements for nesting and foraging of farmland birds.We thus recommend to maintain and restore scattered trees or woodlots with complex structure in agricultural landscape.展开更多
As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laborato...As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.展开更多
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity...Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.展开更多
Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected ...Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected areas reduce the loss and degradation of natural habitats to various wild species of plants. This study examined the forest resources in five subzones by conducting tree/shrub species inventory to be able to develop an effective forest management plan for the Buffer Zone Forest Reserve for the sustainable conservation of flora and fauna of Nimule National Park. This is with the view to identify the main tree and shrub species;assess the composition, distribution, and abundance of various tree/shrub species;to determine the species diversity as well as the richness of these areas in terms of growth and performance where DBH and heights of trees/shrubs in the circular sample plots were measured. The results revealed the overall mean DBH and H of 13.83 cm and 6.61 m respectively. The highest number of trees was obtained in subzone B followed by D, while the least were found in subzone A. The overall mean tree/shrub density was 0.83 tons/ha. The mean total basal area and volume per hectare were 3252.74 m<sup>2</sup>/ha and 46,540.82 m<sup>3</sup>/ha respectively. The overall species abundance and distribution indicate Combretum spp, Cedrella spp., Grewia mollis, Acacia Sieberiana, Ziziphus abysinica, and Acacia seyal were the most dominant species, with over 12 species richness at the deposition side of the River Nile, 13 species at the western side of the Nile, the Administration site shows only 7 species, the lowland of Mt. Gordon show over 14 different species, whereas over 10 species were found on the top of Mt. Gordon. The overall mean diversity indices and evenness of H’, D, and E depicted 2.507, 0.871, and 0.840 respectively. These results yielded are relatively moderate. Therefore, conservation efforts are very necessary to improve and maintain the quality of vegetation cover.展开更多
Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur seque...Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur sequentially or simultaneously in tropical natural forests. Understanding coexistence and competition mechanisms of tree species requires knowledge of interactions within and between species. However, many conservation efforts and strategies failed due to inability to identify and maintain functional coexistence mechanisms among tree species in the forest. Also, most trees died because of pressure on their habitats and not because of limiting growth resources. Hence, species identity, minimum distance and size of the neighbouring trees which are responsible for coexistence of competing trees in most tropical forests have not been explicitly reviewed. Therefore, this review evaluated some of the density dependent mechanisms for coexistence of tree species alpha diversity in tropical forests. Many interactive mechanisms are responsible for coexistence tree species in tropical forests. Inter- and intra-specific competitions are the most significant and both facilitate positive and negative density dependence. Therefore, switching from negative to positive density dependence may occur in some situations. Positive and negative density effects regulate species abundance and coexistence through conspecific and heterospecific structures. Aggregates of conspecific and heterospecific neighbours constitute forest spatial structure. Negative density interactions are mutually exclusive and basically ranged from effect of species identity of neighbours, distance to neighbours and tree size of the neighbours to reference trees in the community structures. Some mechanisms shorten distances for heterospecific than conspecific interactions. Conspecific structures improved survival and growth of rare tree species. Interactive mechanisms in tree community and population structures facilitate species diversity and size inequality, respectively.展开更多
Understanding the relationships between plant diversity and the environment is an important step towards conservation of species and ecosystems.In this study,we hypothesize that community species richness decreases an...Understanding the relationships between plant diversity and the environment is an important step towards conservation of species and ecosystems.In this study,we hypothesize that community species richness decreases and species composition change along the elevation gradient,with a greater contribution of species turnover than nestedness to beta diversity.We surveyed plant species in 300 plots(1 m×1 m)in four elevational bands(2100 m,2300m,2500 m,and 2700 m)in the CaparaóNational Park,Southeastern Brazil.The samples presented a great number of species(97 spp.,59 genera,27families),however,74%of the species were considered rare with their relative abundance being<1%.Among the four bands along the gradient,we detected two distinct communities with few species in common.The transition between the two communities occurred at 2500 m,and this elevation band also had the highest species richness in total.A non-metric multidimensional scaling(NMDS)showed floristic differences between the bands even though they had similar richness.In 89%of the plot pairs,using pairwise comparison of species composition,only half of the species that occurred in one did occur in the other plot.The dissimilarity among the plots and elevational band reflects a significant contribution of spatial species turnover to the species richness and beta diversity on the Caparaómountain.Beta diversity increased with spatial scale(from plot to elevational-band).The dissimilarity(βSOR=0.907)in the area was due almost exclusively to spatial species turnover(βSIM=0.879),with very low contribution of species nestedness(βSNE=0.028).Our research showed that species richness does not decrease with elevation in the study area,but the floristic composition changes.The clear distinction of species along the gradient show that spatial species turnover is the major diversitygenerating process in the studied area.展开更多
Four species new to science were identified in the Tellinidae museum collections in the Marine Biological Museum of Chinese Academy of Sciences.Pinguitellina triquetra sp.nov.,collected in 1981,has not previously been...Four species new to science were identified in the Tellinidae museum collections in the Marine Biological Museum of Chinese Academy of Sciences.Pinguitellina triquetra sp.nov.,collected in 1981,has not previously been described or reported.It differs from other Pinguitellina species by its trigonal shape,rose-colored valve interior,and deep and wide pallial sinus,which is confluent with the pallial line.Pinguitellina protuberangla sp.nov.has a broad and deep dorsal corner,short and straight posterodorsal margin,comparatively large adductor scars,depressed and fragile shells,and deep socket at the anterior edge of the right valve.Pinguitellina minuta sp.nov.was previously misidentified as Arcopella casta in China.It is a new species based on its unique characteristics,which include small,fragile,inflated,translucent,and triangularly ovate-shaped shells with acuminated and convex umboes.As the first species described in China within the genus Abranda Iredale,1924,Abranda xui sp.nov.has internal ligaments and thin,fragile,and translucent elliptical shells with fine radials on the surface.In this study,we reorganized the species currently contained in the two genera Pinguitellina and Abranda and created keys to the known species.We believe that numerous collected bivalve specimens have been overlooked in the South China Sea,and to date,mollusk has not been adequately sampled.Thus,further exploration and analysis are required to understand species diversity in this area.展开更多
The disappearance of resources with high genetic potential and great utility for people and the challenge of the conservation and sustainable management of these resources are two opposing facts of which the world is ...The disappearance of resources with high genetic potential and great utility for people and the challenge of the conservation and sustainable management of these resources are two opposing facts of which the world is now concerned. In Benin, forests and agroforestry systems complement each other in wood supply for mortar and pestle manufacture. Thus, this study aimed to investigate the diversity of woody species used for mortar and pestle manufacture and to analyze the preferences of manufacturers through an ethnobotanical approach. Based on the snowball sampling method, and interviews with 112 manufacturers from different ethnic groups, we identified 31 tree species. These species belong to 30 genera and 13 plant families. The Fabaceae are more represented with 14 species (i.e. 45% of the total). Ten are frequently used. But there are four species, such as Vitellaria paradoxa C. F. Gaertn., Prosopis africana (Guill. & Perr.) Taub., Terminalia glaucescens Planch. ex Benth. and Pericopsis laxiflora (Benth.) Meeuwen, which are highly preferred by manufacturers respectively. The calculation of the Indexes of Possession of Global Knowledge (IPSG) revealed that the ethnic group Nagot (0.204) possessed more knowledge and is followed by Mahi (0.201) and Fon (0.18) respectively. Forests and agroforestry systems are both supply sites for manufacturers. The non-parametric Wilcoxon test proved that there are no significant differences between the species’ preference for mortars or pestles manufacture (v = 181, p-value = 0.38). Since the trees cutting in agroforestry systems can be destructive to them, provisions such as the promotion of agroforestry in rural areas and the integration of the used species in the reforestations programs must be taken to curb the pressure and contribute to the conservation of the biodiversity.展开更多
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom...Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.展开更多
Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across diffe...Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across different time scales and salinity fluctuation have rarely been quantified.The effects of salinity on floristic diversity in mangroves are not fully understood due to the temporal and spatial heterogeneity of salinity.In this study,we monitored water salinity at an interval of 10-min over one year in three mangrove catchment areas representing the outer part,middle part,and inner part respectively of Dongzhai Bay,Hainan,China.The number of mangrove community types and dominant mangrove species of the three catchment areas were also investigated.We found that the diurnal variation and dry-season intra-month variation in water salinity were driven by tidal cycles.The seasonal variation in water salinity was mainly driven by rainfall with higher salinity occurring in the dry season and lower salinity occurring in the wet season.Spatially,water salinity was highest at the outer part,intermediate at the middle part,and lowest at the inner part of the bay.The intra-month and annual fluctuations of water salinity were highest at the middle part and lowest at the outer part of the bay.The number of mangrove community types and dominant species were lowest at the outer part,intermediate at the middle part,and highest at the inner part of the bay.These results suggest that the temporal variation of water salinity in mangroves is driven by different factors at different time scales and therefore it is necessary to measure water salinity at different time scales to get a complete picture of the saline environment that mangroves experience.Spatially,lower salinity levels benefit mangrove species richness within a bay landscape,however,further research is needed to distinguish the effects of salinity fluctuation and salinity level in affecting mangrove species richness.展开更多
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
文摘Maintaining natural habitats is crucial for the preservation of insects and other species that indicate environmental changes. However, the Mpanga/Kipengere Game Reserve and its surrounding farmlands are facing disturbance due to human activities, which is putting many wildlife species, particularly larger mammals, at risk. To determine the impact of human activities on butterfly species diversity and abundance in the reserve and its surrounding areas, we conducted a study from November 2021 to October 2023. We collected butterfly data using transect walks and baited traps in two habitat types. Our study yielded 2799 butterfly Individuals ranging in 124 species divided into five families habitat, season, and anthropogenic factors are significant environmental variables influencing species diversity and abundance of butterflies. Therefore, it’s important to protect habitat and dry-season water for the conservation of invertebrates such as butterflies. Our study findings provide essential information for ecological monitoring and future assessment of the Mpanga/Kipengere Game Reserve ecosystem health.
文摘Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.
基金supported by the National Natural Science Foundation of China(Project Nos.U23A20142 and 32370013)Hainan Province Science and Technology Special Fund(ZDYF2023RDYL01)+1 种基金the Hainan Institute of National Park,HINP,KY-24ZK02the Yunnan Province Expert Workstation Program(No.202205AF150014)。
文摘Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocarps provide food and shelter for many organisms,mostly invertebrates,but also some vertebrates,as well as food and medicine for humans.Despite extensive research on the species diversity and phylogenetic relationships of polypores in recent years,there remains a lack of comprehensive understanding of their distribution patterns and species composition at the large scale.Checklists of polypores from the tropical zone,including tropical Africa,tropical America,and tropical Asia,were analyzed for species diversity,distribution patterns,major taxa,and nutritional modes.A total of 1,902 polypore species was found in the three regions,representing 8 orders,46families,and 250 genera of Agaricomycetes.The orders Polyporales(especially the family Polyporaceae)and Hymenochaetales(especially the family Hymenochaetaceae)had the most prolific taxa,with their species accounting for 93.4%of the total polypores listed.Each of 1,565(or 82.3%)of the total 1,902 species were found in only one of the three regions studied,and we treat them temporarily as"regional endemic species".Only 141species were shared among all three regions,accounting for a mere 7.4%.Tropical Africa and tropical America had the greatest number of shared species and the highest S?rensen similarity index(SC)value.Tropical forests had a higher species richness compared with temperate to boreal forests of the Northern Hemisphere,and in addition,also a higher proportion of white rot polypores compared to brown rot and ectomycorrhizal species.This study outlines the distribution patterns and species diversity of polypores in the world,shedding light on their ecological significance in diverse ecosystems.
文摘Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
文摘The conservation of plant biodiversity has become one of the most important objectives in the sustainable management of Guinean-Congolese ecosystems. However, in the south-east zone of Cameroon, there is a lack of rigor in the management of these forests, which can result in the loss of species of high conservation value. The study was carried out in communal forests in the south-east zone of Cameroon. Its aim was to carry out a floristic inventory and then compare the list of species with the IUCN catalog. Twenty-four plots, each with a surface area of 0.2 ha, were set up in the Gari-Gombo communal forest. All timbers with a DBH ≥ 5 cm were systematically counted. A total of 176 species, belonging to 144 genera and 45 families, were surveyed. Fabaceae (42.08%), Malvaceae (39%), Euphorbiaceae (24.64%), Moraceae (20.92%), Apocynaceae (18.64%), Cecropiaceae (16.60%), Ulmaceae (14.76%), Meliaceae (14.61%), Violaceae (14.08%), Combretaceae (12.67%), Theobroma cacao (21.17%), Baphia leptobotrys (18.06%), Rinorea sp. (14.09%), Musanga cecropioides (12.18%), Terminalia superba (10.32%), Neosloetiopsis kamerunensis (10.14%), Celtis zenkeri (8.29%) and Alstonia boonei (7.77%) were the most important taxa. Nearly 90% of the species in this forest are Guinean species, with a dominance of Guinean-Congolese species (66%). Fourteen (14) threatened species have been identified in the FCGG. This study, which highlights the rich biodiversity of communal forests, is important for guiding biodiversity conservation policies in ecosystems used for production.
基金supported by grants from the National Natural Science Foundation of the China Joint Key Program(No.U1703237)Postgraduate Research Innovation Project in the Autonomous Region(No.XJ2022G017)the National Natural Science Foundation of China Regional Program(No.32160260)。
文摘An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasis plants communities to various environmental factors.Nineteen sample plots(50 m×50 m)were selected in the Daliyabuyi Oasis in the Taklimakan Desert hinterland based on the location of groundwater monitoring wells and 76 vegetation quadrats(25 m×25 m)were established.A two-way indicator species analysis,Mantel test,detrended correspondence analysis,canonical correspondence analysis(CCA),and hierarchical partitioning were used to provide an in-depth analysis of community classification,species composition,and environmental interpretation of the oasis.A generalized linear model was used to verify the results which showed that the current oasis community could be divided into four types according to the dominant species,which is controlled by soil moisture.Measurement of species composition and distribution of communities showed significant differences between species diversity of individual community types.Variations in groundwater depth affects patterns of species diversity which is sensitive to richness,while the degree of surface water disturbance affects the pattern of species evenness.Moreover,the CCA ordination map showed that community distribution and diversity characteristics have their own preferences in habitat gradients.The study concluded that the species dominance of the community and the composition and distribution are not dominated by a single factor.There are differences in the scale and effect of different water resource types in maintaining community characteristics.
基金Supported by Benefit Monitoring of Natural Forest Resources Protection Project in Guizhou Province.
文摘[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were 107 species of vascular plants belonging to 79 genera and 51 families in Leigong Mountain F.longipetiolata community,including 3 species of pteridophytes belonging to 3 genera and 3 families,104 species of spermatophytes belonging to 76 genera and 48 families,including 3 species of gymnosperms belonging to 3 genera and 3 families,and 101 species of angiosperms belonging to 73 genera and 45 families.The types of Leigong Mountain F.longipetiolata community were divided into 7 formations,and the top 10 important species of each formation were Fagaceae,followed by Lauraceae and Ericaceae.The change trend of tree layer richness index was formation I>formation IV>formation VI>formation III>formation VII>formation II>formation V;the dominance index was formation I>formation IV>formation V>formation VI>formation VII>formation III>formation II;H diversity index was formation V>formation II>formation I>formation III>formation VII>formation VI>formation IV;the evenness index is formation II>formation III>formation VI>formation VII>formation IV>formation I>formation V;the total diversity index of the community,formation I(3.67)was the highest,formation V(2.74)was the lowest,manifested as formation I>formation III>formation VI>formation II>formation IV>formation VII>formation V.[Conclusions]The community stability is closely related to its species composition,and the background species is the basis for the survival of the community;the existence of rare species can further enhance the community diversity index and enhance the community stability.
基金supported by the internal grant agency of the Faculty of AgriSciences of Mendel University in Brno(AF-IGA2022-IP-034).
文摘The loss of bird species diversity is a crucial problem in the European agricultural landscape.Change in the area coverage of major land cover types has been mentioned as one of the main factors responsible for bird biodiversity impoverishment.In this study,we focused on the impact of landscape matrix characteristics on bird species richness and on Faith’s phylogenetic diversity index on a spatial scale of 1000-m radius around the measured occurrence points.We investigated how land cover composition affects bird diversity on the landscape scale using nationwide citizen science data.In total,168,739 records of bird occurrence in the South Moravian Region of the Czech Republic during growing season from 2009 to 2019 were evaluated.We found that the presence of water bodies and wetlands significantly corresponded to the areas of highest bird species richness.We also revealed that the presence of forests(~60%of the forest in the Czech Republic is occupied by commercial forests),urban areas and arable land were negatively associated with bird species richness and phylogenetic diversity.Forests(both coniferous and deciduous)and urban habitats were found to have a tendency to host a clustered phylogenetic community structure in comparison with wetland and arable land.A strong negative association between forest proportion and bird diversity led us to conclude that the expansion of the forest(with simple species composition,horizontal and vertical structure)could be one of the critical drivers of the decline of bird species diversity in the European agricultural landscape.On the other hand,our results also pointed out that small woody features(i.e.,woodlots)and scattered woodland shrub vegetation were one of the main landscape characteristics supporting a bird diversity in rural landscape.This is in concordance with other studies which mention these landscape structures as important elements for nesting and foraging of farmland birds.We thus recommend to maintain and restore scattered trees or woodlots with complex structure in agricultural landscape.
基金supported byÁreas Protegidas da Amazônia(ARPA)Amazonas Distribuidora de Energia S.A.,and Associação Comunidade Waimiri Atroari+4 种基金Rufford Foundation(grant number 13675-1)the Conservation Food and Health Foundation,and Idea WildNational Geographic Society grant(NGS-93497C-22)awarded to CAP.I.J is funded through a UKRI Future Leaders Fellowship(MR/T019018/1)M.B received a productivity grant from CNPq(304189/2022-7)European Union’s Horizon 2020 research and innovation programme under the grant agreement No.854248(TROPIBIO)。
文摘As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.
基金supported by the National Natural Science Foundation of China(31970116,72274192)。
文摘Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.
文摘Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected areas reduce the loss and degradation of natural habitats to various wild species of plants. This study examined the forest resources in five subzones by conducting tree/shrub species inventory to be able to develop an effective forest management plan for the Buffer Zone Forest Reserve for the sustainable conservation of flora and fauna of Nimule National Park. This is with the view to identify the main tree and shrub species;assess the composition, distribution, and abundance of various tree/shrub species;to determine the species diversity as well as the richness of these areas in terms of growth and performance where DBH and heights of trees/shrubs in the circular sample plots were measured. The results revealed the overall mean DBH and H of 13.83 cm and 6.61 m respectively. The highest number of trees was obtained in subzone B followed by D, while the least were found in subzone A. The overall mean tree/shrub density was 0.83 tons/ha. The mean total basal area and volume per hectare were 3252.74 m<sup>2</sup>/ha and 46,540.82 m<sup>3</sup>/ha respectively. The overall species abundance and distribution indicate Combretum spp, Cedrella spp., Grewia mollis, Acacia Sieberiana, Ziziphus abysinica, and Acacia seyal were the most dominant species, with over 12 species richness at the deposition side of the River Nile, 13 species at the western side of the Nile, the Administration site shows only 7 species, the lowland of Mt. Gordon show over 14 different species, whereas over 10 species were found on the top of Mt. Gordon. The overall mean diversity indices and evenness of H’, D, and E depicted 2.507, 0.871, and 0.840 respectively. These results yielded are relatively moderate. Therefore, conservation efforts are very necessary to improve and maintain the quality of vegetation cover.
文摘Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur sequentially or simultaneously in tropical natural forests. Understanding coexistence and competition mechanisms of tree species requires knowledge of interactions within and between species. However, many conservation efforts and strategies failed due to inability to identify and maintain functional coexistence mechanisms among tree species in the forest. Also, most trees died because of pressure on their habitats and not because of limiting growth resources. Hence, species identity, minimum distance and size of the neighbouring trees which are responsible for coexistence of competing trees in most tropical forests have not been explicitly reviewed. Therefore, this review evaluated some of the density dependent mechanisms for coexistence of tree species alpha diversity in tropical forests. Many interactive mechanisms are responsible for coexistence tree species in tropical forests. Inter- and intra-specific competitions are the most significant and both facilitate positive and negative density dependence. Therefore, switching from negative to positive density dependence may occur in some situations. Positive and negative density effects regulate species abundance and coexistence through conspecific and heterospecific structures. Aggregates of conspecific and heterospecific neighbours constitute forest spatial structure. Negative density interactions are mutually exclusive and basically ranged from effect of species identity of neighbours, distance to neighbours and tree size of the neighbours to reference trees in the community structures. Some mechanisms shorten distances for heterospecific than conspecific interactions. Conspecific structures improved survival and growth of rare tree species. Interactive mechanisms in tree community and population structures facilitate species diversity and size inequality, respectively.
基金financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil(CAPES)-Finance Code 001.
文摘Understanding the relationships between plant diversity and the environment is an important step towards conservation of species and ecosystems.In this study,we hypothesize that community species richness decreases and species composition change along the elevation gradient,with a greater contribution of species turnover than nestedness to beta diversity.We surveyed plant species in 300 plots(1 m×1 m)in four elevational bands(2100 m,2300m,2500 m,and 2700 m)in the CaparaóNational Park,Southeastern Brazil.The samples presented a great number of species(97 spp.,59 genera,27families),however,74%of the species were considered rare with their relative abundance being<1%.Among the four bands along the gradient,we detected two distinct communities with few species in common.The transition between the two communities occurred at 2500 m,and this elevation band also had the highest species richness in total.A non-metric multidimensional scaling(NMDS)showed floristic differences between the bands even though they had similar richness.In 89%of the plot pairs,using pairwise comparison of species composition,only half of the species that occurred in one did occur in the other plot.The dissimilarity among the plots and elevational band reflects a significant contribution of spatial species turnover to the species richness and beta diversity on the Caparaómountain.Beta diversity increased with spatial scale(from plot to elevational-band).The dissimilarity(βSOR=0.907)in the area was due almost exclusively to spatial species turnover(βSIM=0.879),with very low contribution of species nestedness(βSNE=0.028).Our research showed that species richness does not decrease with elevation in the study area,but the floristic composition changes.The clear distinction of species along the gradient show that spatial species turnover is the major diversitygenerating process in the studied area.
基金Supported by the National Key Research and Development Program of China(Nos.2021YFF0502801,2021YFE0193700)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB42000000,XDA22050203)the Taishan Scholars Program(No.tsqn202306280)。
文摘Four species new to science were identified in the Tellinidae museum collections in the Marine Biological Museum of Chinese Academy of Sciences.Pinguitellina triquetra sp.nov.,collected in 1981,has not previously been described or reported.It differs from other Pinguitellina species by its trigonal shape,rose-colored valve interior,and deep and wide pallial sinus,which is confluent with the pallial line.Pinguitellina protuberangla sp.nov.has a broad and deep dorsal corner,short and straight posterodorsal margin,comparatively large adductor scars,depressed and fragile shells,and deep socket at the anterior edge of the right valve.Pinguitellina minuta sp.nov.was previously misidentified as Arcopella casta in China.It is a new species based on its unique characteristics,which include small,fragile,inflated,translucent,and triangularly ovate-shaped shells with acuminated and convex umboes.As the first species described in China within the genus Abranda Iredale,1924,Abranda xui sp.nov.has internal ligaments and thin,fragile,and translucent elliptical shells with fine radials on the surface.In this study,we reorganized the species currently contained in the two genera Pinguitellina and Abranda and created keys to the known species.We believe that numerous collected bivalve specimens have been overlooked in the South China Sea,and to date,mollusk has not been adequately sampled.Thus,further exploration and analysis are required to understand species diversity in this area.
文摘The disappearance of resources with high genetic potential and great utility for people and the challenge of the conservation and sustainable management of these resources are two opposing facts of which the world is now concerned. In Benin, forests and agroforestry systems complement each other in wood supply for mortar and pestle manufacture. Thus, this study aimed to investigate the diversity of woody species used for mortar and pestle manufacture and to analyze the preferences of manufacturers through an ethnobotanical approach. Based on the snowball sampling method, and interviews with 112 manufacturers from different ethnic groups, we identified 31 tree species. These species belong to 30 genera and 13 plant families. The Fabaceae are more represented with 14 species (i.e. 45% of the total). Ten are frequently used. But there are four species, such as Vitellaria paradoxa C. F. Gaertn., Prosopis africana (Guill. & Perr.) Taub., Terminalia glaucescens Planch. ex Benth. and Pericopsis laxiflora (Benth.) Meeuwen, which are highly preferred by manufacturers respectively. The calculation of the Indexes of Possession of Global Knowledge (IPSG) revealed that the ethnic group Nagot (0.204) possessed more knowledge and is followed by Mahi (0.201) and Fon (0.18) respectively. Forests and agroforestry systems are both supply sites for manufacturers. The non-parametric Wilcoxon test proved that there are no significant differences between the species’ preference for mortars or pestles manufacture (v = 181, p-value = 0.38). Since the trees cutting in agroforestry systems can be destructive to them, provisions such as the promotion of agroforestry in rural areas and the integration of the used species in the reforestations programs must be taken to curb the pressure and contribute to the conservation of the biodiversity.
基金supported by the Guangxi Key R&D Program (project No. AB16380254)a research project of Guangxi Forestry Department (Guilinkezi [2015] No.5)supported a grant for Bagui Senior Fellow (C33600992001)。
文摘Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.
基金This study was funded by the Forestry Administration of Guangdong Province(2022KJCX014)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010550)the Department of Science and Technology of Guangdong Province,China(2019B121202003).
文摘Salinity is among the most critical factors limiting the growth and species distribution of coastal plants.Water salinity in estuarine ecosystems varies temporally and spatially,but the variation patterns across different time scales and salinity fluctuation have rarely been quantified.The effects of salinity on floristic diversity in mangroves are not fully understood due to the temporal and spatial heterogeneity of salinity.In this study,we monitored water salinity at an interval of 10-min over one year in three mangrove catchment areas representing the outer part,middle part,and inner part respectively of Dongzhai Bay,Hainan,China.The number of mangrove community types and dominant mangrove species of the three catchment areas were also investigated.We found that the diurnal variation and dry-season intra-month variation in water salinity were driven by tidal cycles.The seasonal variation in water salinity was mainly driven by rainfall with higher salinity occurring in the dry season and lower salinity occurring in the wet season.Spatially,water salinity was highest at the outer part,intermediate at the middle part,and lowest at the inner part of the bay.The intra-month and annual fluctuations of water salinity were highest at the middle part and lowest at the outer part of the bay.The number of mangrove community types and dominant species were lowest at the outer part,intermediate at the middle part,and highest at the inner part of the bay.These results suggest that the temporal variation of water salinity in mangroves is driven by different factors at different time scales and therefore it is necessary to measure water salinity at different time scales to get a complete picture of the saline environment that mangroves experience.Spatially,lower salinity levels benefit mangrove species richness within a bay landscape,however,further research is needed to distinguish the effects of salinity fluctuation and salinity level in affecting mangrove species richness.