Due to its unique advantages, molecular marker technology is widely applied in the research of forest tree species. This paper reviewed the application of molecular marker technology in tree species resource diversity...Due to its unique advantages, molecular marker technology is widely applied in the research of forest tree species. This paper reviewed the application of molecular marker technology in tree species resource diversity, germplasm identification, genetic map construction, gene mapping and marker-assisted selection (MAS) breeding. In addition, it elaborated the great significance of molecular marker technology to promote the sustainable development of forestry production in China.展开更多
Cropland expansion has caused the loss of soil organic carbon(SOC)and the degradation of microbial communities.Fallowing is an important strategy for soil restoration,and fungi are critical in soil fertilization.This ...Cropland expansion has caused the loss of soil organic carbon(SOC)and the degradation of microbial communities.Fallowing is an important strategy for soil restoration,and fungi are critical in soil fertilization.This study compared the soil properties and fungal assemblage in two adjacent environments(farmland vs.fallowing)using a 30-year field experiment composed of five treatments:fallowing and agricultural management under no fertilization,chemical fertilization,and chemical fertilization plus cow manure or crop straw.The fallowed soil had more diverse fungi and maintained higher SOC than the artificially managed treatments.Importantly,the relative abundance of Chaetomiaceae was positively correlated with all the carbon components(SOC,dissolved organic carbon,and microbial biomass carbon)simultaneously.An RNA-Seq of Trichocladium uniseriatum,the key fungus affiliated with Chaetomiaceae,showed that straw addition significantly upregulated the genes for T.uniseriatum melanogenesis,resulting in recalcitrant necromass formation.A remarkable carbon dioxide(CO_(2))assimilation capacity of T.uniseriatum was revealed using^(13)C-labelling assay.Therefore,T.uniseriatum improved SOC storage directly by CO_(2)fixation and indirectly by melanogenesis.Fertilization of agricultural systems can stimulate the growth of T.uniseriatum.Inoculation of T.uniseriatum promoted crop growth,facilitating carbon absorption from the roots.This study highlights that the valuable microbial species resources preserved in fallowed soils can improve farmland ecosystems.展开更多
基金Supported by the Project of New 20 Items of Colleges and Universities in Jinan City (2021GXRC057). Taishan Industrial Leading Talent Project (Efficient Ecological Agriculture Innovation) (LJNY202001).
文摘Due to its unique advantages, molecular marker technology is widely applied in the research of forest tree species. This paper reviewed the application of molecular marker technology in tree species resource diversity, germplasm identification, genetic map construction, gene mapping and marker-assisted selection (MAS) breeding. In addition, it elaborated the great significance of molecular marker technology to promote the sustainable development of forestry production in China.
基金supported by the Excellent Youth Science Fund of Henan Province,China(No.242300421147)the National Key Research and Development Program of China(No.2022YFD1500203)+1 种基金the National Natural Science Foundation of China(Nos.42377334 and 42007005)the Joint Fund Project of Henan Province,China(No.232103810009)。
文摘Cropland expansion has caused the loss of soil organic carbon(SOC)and the degradation of microbial communities.Fallowing is an important strategy for soil restoration,and fungi are critical in soil fertilization.This study compared the soil properties and fungal assemblage in two adjacent environments(farmland vs.fallowing)using a 30-year field experiment composed of five treatments:fallowing and agricultural management under no fertilization,chemical fertilization,and chemical fertilization plus cow manure or crop straw.The fallowed soil had more diverse fungi and maintained higher SOC than the artificially managed treatments.Importantly,the relative abundance of Chaetomiaceae was positively correlated with all the carbon components(SOC,dissolved organic carbon,and microbial biomass carbon)simultaneously.An RNA-Seq of Trichocladium uniseriatum,the key fungus affiliated with Chaetomiaceae,showed that straw addition significantly upregulated the genes for T.uniseriatum melanogenesis,resulting in recalcitrant necromass formation.A remarkable carbon dioxide(CO_(2))assimilation capacity of T.uniseriatum was revealed using^(13)C-labelling assay.Therefore,T.uniseriatum improved SOC storage directly by CO_(2)fixation and indirectly by melanogenesis.Fertilization of agricultural systems can stimulate the growth of T.uniseriatum.Inoculation of T.uniseriatum promoted crop growth,facilitating carbon absorption from the roots.This study highlights that the valuable microbial species resources preserved in fallowed soils can improve farmland ecosystems.