In the past few years, three-dimensional(3-D) seismogram has become an essential tool for the interpretation of subsurface stratigraphy and depositional systems. Seismic stratigraphy in conjunction with seismic geom...In the past few years, three-dimensional(3-D) seismogram has become an essential tool for the interpretation of subsurface stratigraphy and depositional systems. Seismic stratigraphy in conjunction with seismic geomorphology has elevated the degree to which seismic data can facilitate geological interpretation, especially in a deepwater environment. Technologies such as time slicing and interval attribute analysis can enhance geomorphological interpretations, and, when integrated with stratigraphic analyses, can yield insights regarding distribution of seal and reservoir facies. Multiple attributes corendering can further bring out features of geological interest that other technologies may overlook. This method involves corender spectral decomposition components(SDC) with semblance attributes to describe the distribution of deepwater channel elements and the boundaries of deepwater sinuous channel. Applying this technology to four elements is observed:(1) point-bars,(2) migration of channel meander loops,(3) channel erosion/cut, and(4) avulsion. The planview expression of the deepwater channel ranges from low sinuosity to high sinuosity. Furthermore, this technology has enabled interpreters to visualize details of complex depositional elements and can be used to predict net-to-gross ratio in channel systems, which can be incorporated into borehole planning for exploration as well as development needs to improve risk management significantly. The technology is applied to the study area in an effort to illustrate the variety of interpretation technologies available to the geoscientist.展开更多
Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interfe...Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a signific...It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.展开更多
As an important part of the channel fading, large scale fading should be considered in downlink massive multiple-input multipleoutput(MIMO) systems. This paper investigates the downlink massive MIMO system over a larg...As an important part of the channel fading, large scale fading should be considered in downlink massive multiple-input multipleoutput(MIMO) systems. This paper investigates the downlink massive MIMO system over a large scale fading channel, when the base station takes advantage of maximum-radio transmission(MRT) precoding. The cases when the base station has perfect and imperfect channel state information(CSI) are considered respectively. Specially, through the analysis of single user's ergodic achievable rate, some novel and approximate expressions for the spectral efficiency(SE) are derived. Based on the approximate SE, the effect of the channel estimation error is analyzed intuitively. In addition, the average SE of all the users with different large-scale fading parameters is carefully investigated. Simulations validate that all the theoretical results coincide with numerical results and the large scale fading factors have little influence on SE reduction resulted from channel estimation.展开更多
Spectral characteristics of wind-generated waves in labortaory are presented on the basis of a systematic measurement in a large-scale wind-wave channel and compared with those in the field. A marked characteristics o...Spectral characteristics of wind-generated waves in labortaory are presented on the basis of a systematic measurement in a large-scale wind-wave channel and compared with those in the field. A marked characteristics of the measured spetra is the existence of secondary spectrum-peak. The dependence of spectral peak-frequency, peak-value and zeroth-order moment on wind speed and fetch are presented and found roughly similar to those in the field represented by the JONSWAP spectrum, regardless of the differences in coefficient. The spectral slope beta at high-frequencies are found somewhat greater than those of field wind-waves in both cases of deep and shallow waters. Except for the low-frequency part, the spectral forms measured in different wind conditions are similar and fit for the JONSWAP spectrum with gamma = 6 and beta = 5.5. Some relevant problems are discussed.展开更多
Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kind...Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.展开更多
Miano area is one of the distinct major hydrocarbon producing fields of the Lower Indus basin. Lower Goru is the reservoir strait in this area. The aim of the present study is to exploit the channels reservoirs and ot...Miano area is one of the distinct major hydrocarbon producing fields of the Lower Indus basin. Lower Goru is the reservoir strait in this area. The aim of the present study is to exploit the channels reservoirs and other stratigraphic features in such a terrain where there is always a challenge for the geoscientist to search and exploit the channeled reservoirs. To resolve this issue we have utilized attribute analysis on high resolution 3D-seismic data for the detailed comparative studies for the channels. There are many astonishing features that are identified in the current study, which could not otherwise be easily enhanced with the help of 2D Seismic Data. Seismic attributes such as coherency, frequency (are also appropriate for lithological discrimination), which are sensitive to the channel edges are applied for the channel delineation and their geometrical analysis. Spectral decomposition techniques are also applied for the delineation of channels and to appropriately select the best band for channels identification. Three types of channel geometries are recognized: 1) highly sinuous channel;2) narrow-broad meandering belts;3) moderate to high sinuous channel. NW-SE, N-W trending faults can be helpful to compartmentalize the reservoir. Instantaneous and dominant frequency are more beneficial for further field development based on Gamma Ray logs from nearby drilled wells and dimensional perspectives analysis of the channel reservoir.展开更多
基金The National Natural Science Foundation of China under contract Nos 41102059 and 91328201the National Science and Technology Major Project of China under contract No.2017ZX05032-001
文摘In the past few years, three-dimensional(3-D) seismogram has become an essential tool for the interpretation of subsurface stratigraphy and depositional systems. Seismic stratigraphy in conjunction with seismic geomorphology has elevated the degree to which seismic data can facilitate geological interpretation, especially in a deepwater environment. Technologies such as time slicing and interval attribute analysis can enhance geomorphological interpretations, and, when integrated with stratigraphic analyses, can yield insights regarding distribution of seal and reservoir facies. Multiple attributes corendering can further bring out features of geological interest that other technologies may overlook. This method involves corender spectral decomposition components(SDC) with semblance attributes to describe the distribution of deepwater channel elements and the boundaries of deepwater sinuous channel. Applying this technology to four elements is observed:(1) point-bars,(2) migration of channel meander loops,(3) channel erosion/cut, and(4) avulsion. The planview expression of the deepwater channel ranges from low sinuosity to high sinuosity. Furthermore, this technology has enabled interpreters to visualize details of complex depositional elements and can be used to predict net-to-gross ratio in channel systems, which can be incorporated into borehole planning for exploration as well as development needs to improve risk management significantly. The technology is applied to the study area in an effort to illustrate the variety of interpretation technologies available to the geoscientist.
文摘Near-infrared (NIR) spectrometer based on semiconductor lasers can combine light source and splitter into one, which is an important direction for development of miniature instruments. In order to avoid random interference caused by inconsistency between light sources, the novel evaluation indicators for global stability of multi-channels spectral system were proposed based on the correlation between dynamic deviation spectra of any two channels. The NIR analysis of moisture for corn powder samples based on the partial least squares combined with Savitzky-Golay (SG) smoothing was taken as an example, and a spectral correction method for enhancing prediction performance of multi-channels spectral system was further provided using above evaluation indicators. The experiment results showed that the global stability evaluation indicators significantly increased after SG smoothing correction. Meanwhile, the root-mean-square errors of prediction for corn moisture reduced from 0.373 to 0.283 (%), and the correlation coefficient between predicted and actual values was improved from 0.702 to 0.855. The above results indicated that by improving global stability indicators, the prediction ability of multi-channels spectral system can be improved. The proposed method provided a valuable reference for designing multi-channels diminutive spectrometer with high prediction performance, which had significance for large-scale application of NIR technology.
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
基金supported by National Basic Research Program of China (NO 2012CB316002)China’s 863 Project (NO 2014AA01A703)+2 种基金National Major Projec (NO. 2014ZX03003002-002)Program for New Century Excellent Talents in University (NCET-13-0321)Tsinghua University Initiative Scientific Research Program (2011THZ02-2)
文摘It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.
基金supported by the Natural Science Foundation of China(61201134)State 863 Project(2014AA01A704)111 Project(B08038)
文摘As an important part of the channel fading, large scale fading should be considered in downlink massive multiple-input multipleoutput(MIMO) systems. This paper investigates the downlink massive MIMO system over a large scale fading channel, when the base station takes advantage of maximum-radio transmission(MRT) precoding. The cases when the base station has perfect and imperfect channel state information(CSI) are considered respectively. Specially, through the analysis of single user's ergodic achievable rate, some novel and approximate expressions for the spectral efficiency(SE) are derived. Based on the approximate SE, the effect of the channel estimation error is analyzed intuitively. In addition, the average SE of all the users with different large-scale fading parameters is carefully investigated. Simulations validate that all the theoretical results coincide with numerical results and the large scale fading factors have little influence on SE reduction resulted from channel estimation.
基金This work was financially supported by the National Science Foundation of China(No.4967277)
文摘Spectral characteristics of wind-generated waves in labortaory are presented on the basis of a systematic measurement in a large-scale wind-wave channel and compared with those in the field. A marked characteristics of the measured spetra is the existence of secondary spectrum-peak. The dependence of spectral peak-frequency, peak-value and zeroth-order moment on wind speed and fetch are presented and found roughly similar to those in the field represented by the JONSWAP spectrum, regardless of the differences in coefficient. The spectral slope beta at high-frequencies are found somewhat greater than those of field wind-waves in both cases of deep and shallow waters. Except for the low-frequency part, the spectral forms measured in different wind conditions are similar and fit for the JONSWAP spectrum with gamma = 6 and beta = 5.5. Some relevant problems are discussed.
文摘Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.
文摘Miano area is one of the distinct major hydrocarbon producing fields of the Lower Indus basin. Lower Goru is the reservoir strait in this area. The aim of the present study is to exploit the channels reservoirs and other stratigraphic features in such a terrain where there is always a challenge for the geoscientist to search and exploit the channeled reservoirs. To resolve this issue we have utilized attribute analysis on high resolution 3D-seismic data for the detailed comparative studies for the channels. There are many astonishing features that are identified in the current study, which could not otherwise be easily enhanced with the help of 2D Seismic Data. Seismic attributes such as coherency, frequency (are also appropriate for lithological discrimination), which are sensitive to the channel edges are applied for the channel delineation and their geometrical analysis. Spectral decomposition techniques are also applied for the delineation of channels and to appropriately select the best band for channels identification. Three types of channel geometries are recognized: 1) highly sinuous channel;2) narrow-broad meandering belts;3) moderate to high sinuous channel. NW-SE, N-W trending faults can be helpful to compartmentalize the reservoir. Instantaneous and dominant frequency are more beneficial for further field development based on Gamma Ray logs from nearby drilled wells and dimensional perspectives analysis of the channel reservoir.