The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability ...The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability of the problem is given. A numerical algorithm for solving the problem is provided and a numerical example is presented.展开更多
The author surveys a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated.All of them are associated with the incompressible Navier-Stokes equations for Newtonian flu...The author surveys a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated.All of them are associated with the incompressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet boundary conditions(specified velocity).These examples include a family of(nonlinear 3D) plane parallel flows,a family of(nonlinear) parallel pipe flows,as well as flows with uniform injection and suction at the boundary.We also identify a key ingredient in establishing the validity of the Prandtl type theory,i.e.,a spectral constraint on the approximate solution to the Navier-Stokes system constructed by combining the inviscid solution and the solution to the Prandtl type system.This is an additional difficulty besides the wellknown issue related to the well-posedness of the Prandtl type system.It seems that the main obstruction to the verification of the spectral constraint condition is the possible separation of boundary layers.A common theme of these examples is the inhibition of separation of boundary layers either via suppressing the velocity normal to the boundary or by injection and suction at the boundary so that the spectral constraint can be verified.A meta theorem is then presented which covers all the cases considered here.展开更多
文摘The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability of the problem is given. A numerical algorithm for solving the problem is provided and a numerical example is presented.
基金Project supported by the National Science Foundation,the 111 Project from the Ministry of Education of China at Fudan University and the COFRS award from Florida State University
文摘The author surveys a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated.All of them are associated with the incompressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet boundary conditions(specified velocity).These examples include a family of(nonlinear 3D) plane parallel flows,a family of(nonlinear) parallel pipe flows,as well as flows with uniform injection and suction at the boundary.We also identify a key ingredient in establishing the validity of the Prandtl type theory,i.e.,a spectral constraint on the approximate solution to the Navier-Stokes system constructed by combining the inviscid solution and the solution to the Prandtl type system.This is an additional difficulty besides the wellknown issue related to the well-posedness of the Prandtl type system.It seems that the main obstruction to the verification of the spectral constraint condition is the possible separation of boundary layers.A common theme of these examples is the inhibition of separation of boundary layers either via suppressing the velocity normal to the boundary or by injection and suction at the boundary so that the spectral constraint can be verified.A meta theorem is then presented which covers all the cases considered here.